

INTERFACE CHALLENGES

CHALLENGES

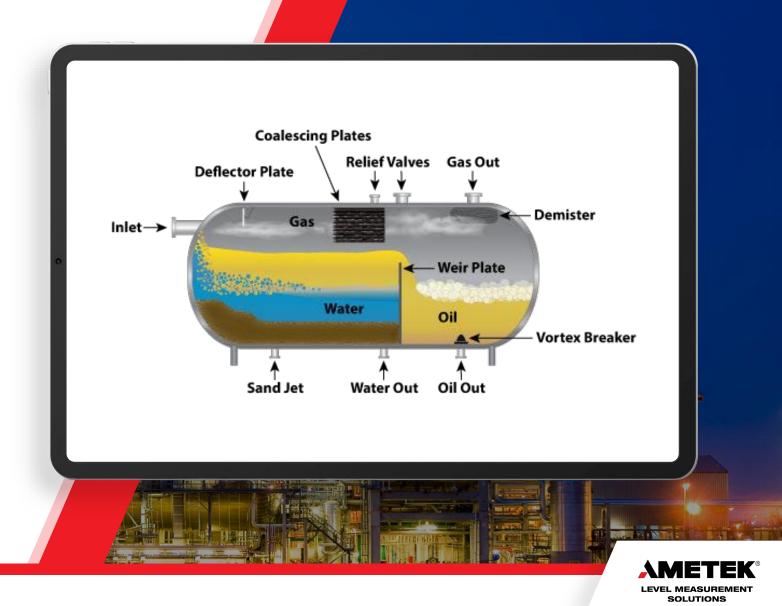
- Most difficult of the level measurements to make
- Least forgiving
- Dynamic environment
- Gradient ideal to measure the top, bottom and internal phase between
- Media often has constituents which add to the complexity
- Thicknesses vary based on time, medias and flow

Interface Solution

BEST OF BREED

A single point of entry into your production vessels

- No HSE (health, environment & safety) concerns
- 4 phase detection (Absolute Level; Emulsion Top; Emulsion Bottom; Sediment) impacting:
 - Product quality
 - Unplanned shutdowns
 - Process optimization / Cost control
 - System integrity
- Superior uptime and reliability
- Low TCO (total cost of ownership)
- Outstanding ROI

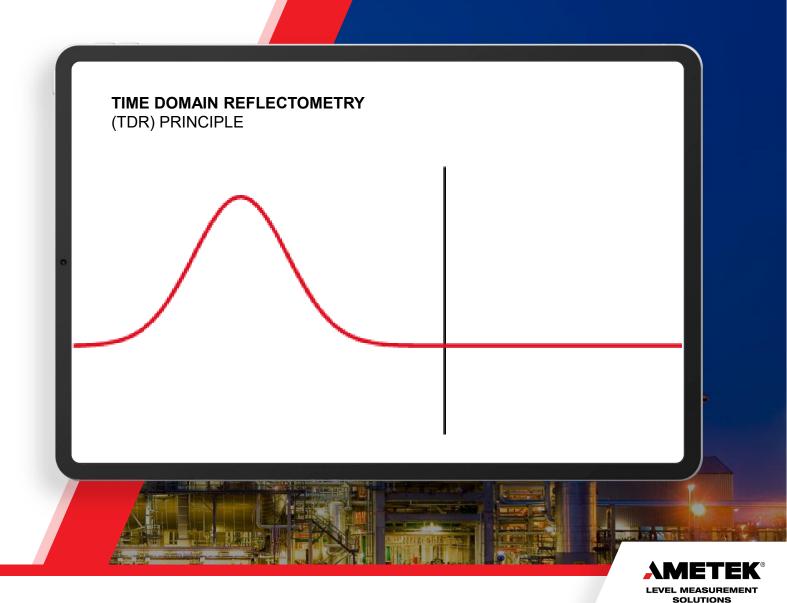

SOLUTIONS

DETECTINGTHE EMULSION

MULTIPHASE MEASUREMENT AND CONTROL

One of the toughest measurement challenges in the industry is the hydrocarbon/water interface measurement, such as in a separator

Knowing the position and thickness of an interface emulsion is critical for maintaining process control, quality, efficiency and profitability



HOW DOESIT WORK

TIME DOMAIN REFLECTOMETRY

?

Pulses of energy are sent down a probe and precision timing circuitry measures the reflection of the signal off the surface of the process

GENESIS:MULTIPHASE DETECTOR

PATENTED INTERNAL ALGORITHM

Separates the various signals

Top-Down TDR

Fires pulses down the probe, like most level transmitters

01

Analyses the waveform to locate the upper level and top of emulsion

GENESIS:MULTIPHASE DETECTOR

PATENTED INTERNAL ALGORITHM

Separates the various signals

Bottom-Up TDR

Fires pulses up, through the water, at the bottom of the emulsion

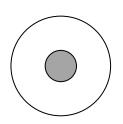
NARROW PULSE

DESIGNCONCEPT

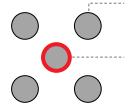
STEP

A clean interface gives a sharp reflection, so the step function offers no more information than the narrow pulse

DESIGNCONCEPT


An interface with tapering dielectric gives little reflected energy with the narrow impulse, however, the step response visibly ramps up

DESIGNCONCEPT

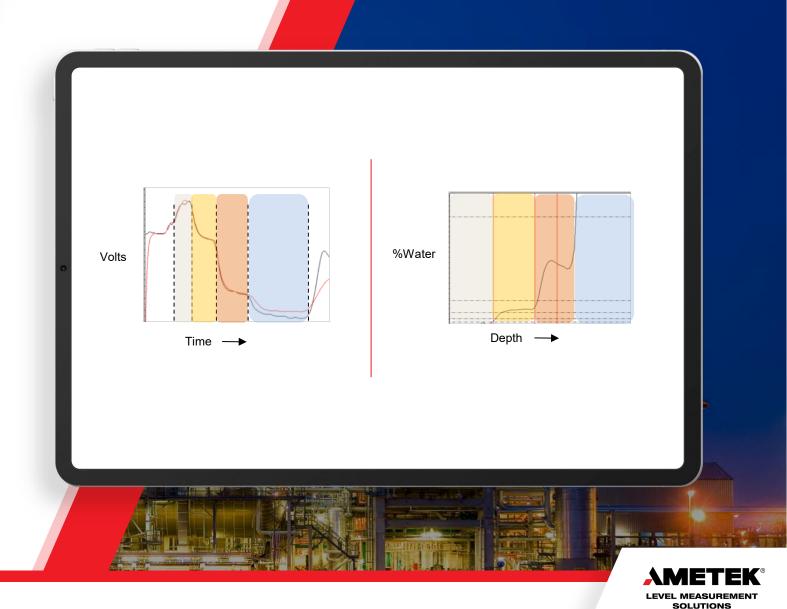


ProbeCoaxial Transmission Line

Four outer reference rods form shield, less buildup

PFA jacket allows pulse to travel through water

DESIGN CONCEPT


GENESIS: MULTIPHASE DETECTOR

INVERSE RECONSTRUCTION ALGORITHM (IRA)

Converting the TDR waveform to:

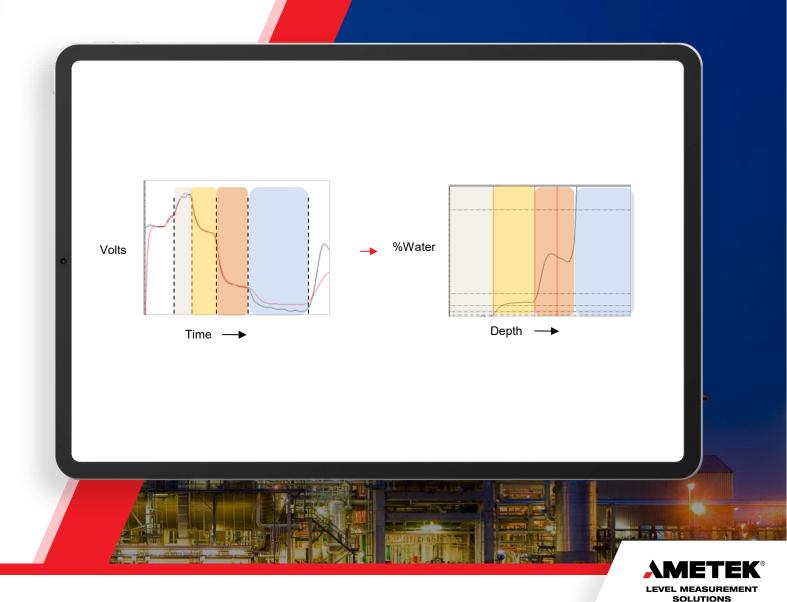
Percent Water vs. Distance

Voltages are incrementally measured along the TDR waveform across the entire length of the probe

DESIGN CONCEPT

GENESIS: MULTIPHASE DETECTOR

Genesis measures the TDR Waveform, and maps that to Percent Water versus Distance


This is accomplished by:

01

Creating a simulation of the probe and the fluid

02

Calculating what layers of fluid would give a TDR signal that matches the measured signal

DESIGN CONCEPT

GENESIS: MULTIPHASE DETECTOR

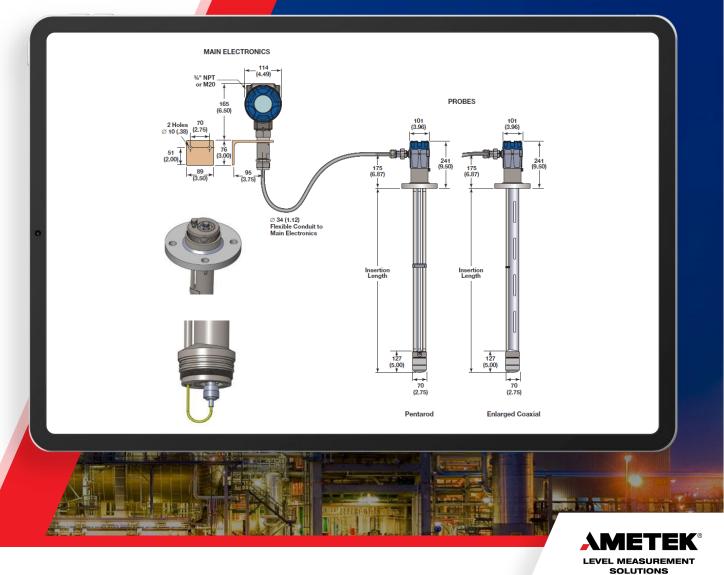
THE RESULT

These demanding and interlaced calculations solve the issues with multiple-reflections, compensation, and tapering emulsions

SYSTEM ASSEMBLY MAIN ELECTRONICS / PROBE

FOUR MAIN COMPONENTS

- Main Electronics
- Probe Electronics
- Probe
- Communications Cable



SYSTEM ASSEMBLY MAIN ELECTRONICS / PROBE

FOUR MAIN COMPONENTS

- Main Electronics
- Probe Electronics
- Probe
- Communications Cable

PROBE STYLES

GENESISMULTIPHASE DETECTOR

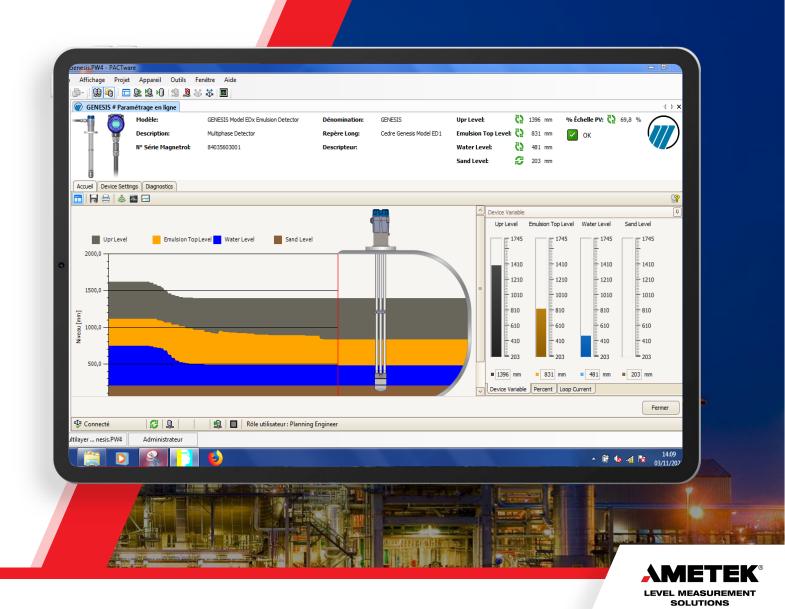
3"/Sch 80 minimum process connection

2.90" (7.3 cm)

1000 psi (70 Bar)

400F (200C)





DTM ED1ADVANCED HOME SCREEN

GENESISMULTIPHASE
DETECTOR

DTM ED1 ADVANCED ienesis.PW4 - PACTware Affichage Projet Appareil Outils Fenêtre Aide 🚾 🗀 距 🖻 🕪 🗎 🧸 🕿 GENESIS # Paramétrage en ligne ∢ ⊳ x (2) 1396 mm % Échelle PV: <a>Q 69,8 % GENESIS Model EDx Emulsion Detector Dénomination: GENESIS Upr Level: Emulsion Top Level: (2) 831 mm Description: Multiphase Detector Repère Long: Cedre Genesis Model ED1 (2) 481 mm N° Série Magnetrol: 84035603001 Descripteur: Water Level: 203 mm Sand Level: Accueil Device Settings Diagnostics <u></u> 🗖 | H 🖨 | 🕹 🍱 🖂 Device Variable Emulsion Top Level Water Level Upr Level Sand Level UprLevel Emulsion Top Level Water Level Sand Level <u>=</u> 1745 **DTM** 2000,0 1410 = 1410 1410 = 1410 ED1 A 1210 = 1210 1210 = 1210 1500,0 -1010 1010 1010 1010 HOME 810 810 810 810 610 610 610 610 410 410 410 410 ■ 1396 mm ■ 481 mm ■ 203 mm 831 mm Device Variable | Percent | Loop Current Fermer **2 1** Connecté 🕏 Rôle utilisateur : Planning Engineer ultilayer ... nesis.PW4 Administrateur

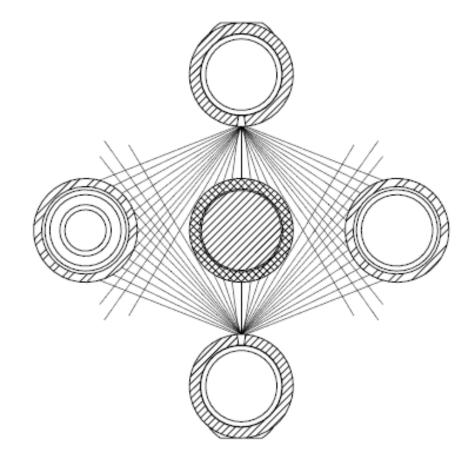
▲ 📑 📞 📲 🔯 03/11/202

TECHNICAL SPECIFICATIONS PERFORMANCE

TRANSMITTER SPECIFICATIONS FUNCTIONAL/PHYSICAL

System Design		
Measurement Principle		TDR based electronics combined with patented, proprietary software algorithm
Input		
Measured Variable		Level, as determined by time of flight
Span		60 centimeters to 6 meters (2 to 20 feet)
Output		
Туре		Four (4) 4–20 mA analog outputs, one (1) with HART;
		3.8-20.5 mA useable (per NAMUR NE43)
Resolution	Analog:	.003 mA
	Digital Display:	1 mm
Diagnostic Alarm		Selectable: 3.6 mA, 22 mA (meets requirements of NAMUR NE 43), or HOLD last output
Diagnostic Indication		Meets requirements of NAMUR NE107
Damping		Adjustable 0-30 seconds
User Interface		
Keypad		4-button menu-driven data entry
Display		Graphic liquid crystal display
Digital Communication/Systems		HART Version 7—with Field Communicator, AMS, or FDI
		DTM (PACTware™), EDDL
Menu Languages	LCD:	English
	HART DD:	English
Power (at wiring board terminals)		Explosion-proof with Instrinsically Safe probe
		24 VDC (±10%), 10 Watt maximum), Um ≤ 30V DC (SELV)

System Design		
Measurement Principle		TDR based electronics combined with patented, proprietary software algorithm
Input		
Measured Variable		Level, as determined by time of flight
Span		60 centimeters to 6 meters (2 to 20 feet)
Output		
Туре		Four (4) 4–20 mA analog outputs, one (1) with HART;
		3.8-20.5 mA useable (per NAMUR NE43)
Resolution	Analog:	.003 mA
	Digital Display:	1 mm
Diagnostic Alarm		Selectable: 3.6 mA, 22 mA (meets requirements of NAMUR NE 43), or HOLD last output
Diagnostic Indication		Meets requirements of NAMUR NE107
Damping		Adjustable 0-30 seconds
User Interface		
Keypad		4-button menu-driven data entry
Display		Graphic liquid crystal display
Digital Communication/Systems		HART Version 7—with Field Communicator, AMS, or FDI
		DTM (PACTware™), EDDL
Menu Languages	LCD:	English
	HART DD:	English
Power (at wiring board terminals)		Explosion-proof with Instrinsically Safe probe
		24 VDC (±10%), 10 Watt maximum), Um ≤ 30V DC (SELV)

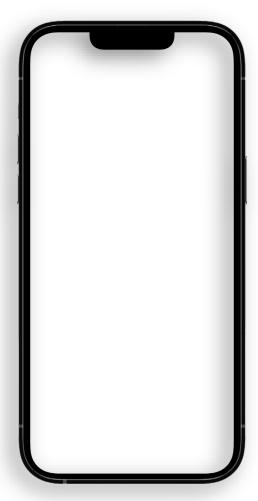

PENTAROD

IN-SITU CLEANING PENTAROD PROBE

Flushing port for the Pentarod probe utilizes a cleaning system for periodic maintenance

Optional slots are placed to direct water onto and around the PFA coated center rod

Guidelines, available upon request


PENTAROD

IN-SITU CLEANING PENTAROD PROBE

Flushing port for the Pentarod probe utilizes a cleaning system for periodic maintenance

Optional slots are placed to direct water onto and around the PFA coated center rod

Guidelines, available upon request

FIELD TESTING

GENESISMULTIPHASE DETECTOR

Lab Testing

3rd **Party** Testing

Field Beta Testing

Customer Installations

LAB TESTING

GENESIS

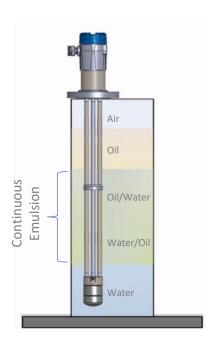
3RD PARTY TESTING

GENESISEXTERNAL LAB TESTING

Southwest Research Institute (San Antonio, Tx)

26 different tests over the course of two days:

01


4 different hydrocarbons with different viscosities

02

Combinations of tap water and salt water

GENESIS 3rd PARTY TESTING

GENESIS 3rd PARTY TESTING

GENESIS 3rd PARTY TESTING

GENESIS3rd PARTY TESTING

GENESIS 3rd PARTY TESTING

CUSTOMERCOMMENTS

"The results are very good. These results demonstrate that Genesis Sensor is able to measure multi-layers (water/emulsion/oil) and is mature enough for being implement at site. You will also receive at the beginning of the Year some requests for the Qualification Process in our Data Base.

Your Technology will really help us to answer to many multi-layer measurement challenges."

GENESISMULTIPHASE DETECTOR

Refinery (Eastern USA)

13-foot (4-meter) desalter

01

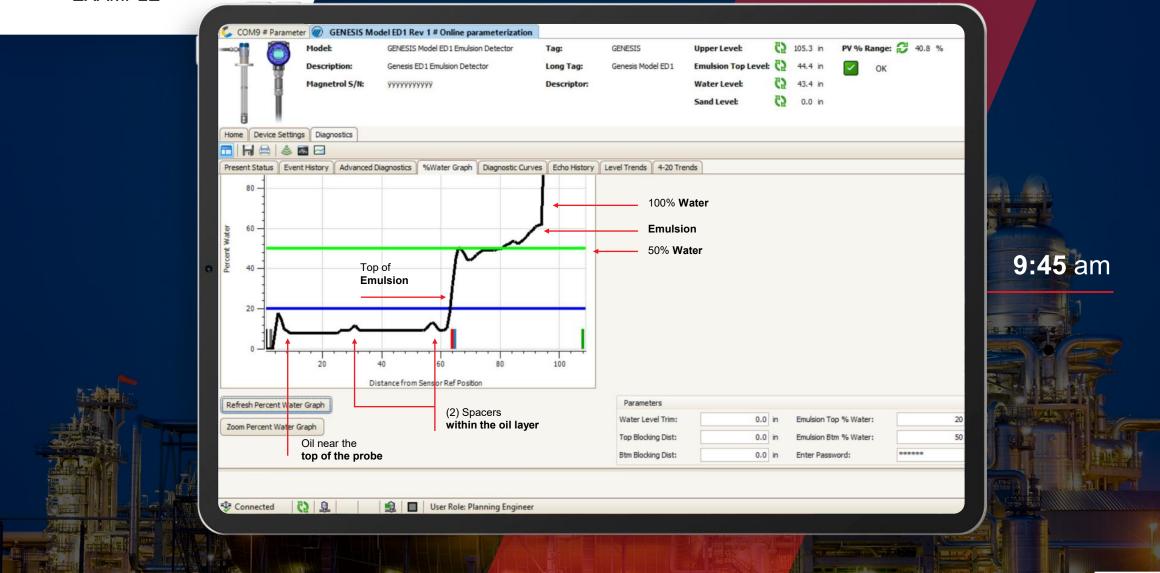
Torque Tube installed

02

Side taps used as reference

GENESISTEST INSTALLATION

Our 3"/300 lb. ANSI flange is mounted on an existing flange


GENESISMULTIPHASE DETECTOR

LEVEL MEASUREMENT SOLUTIONS

BETA EXAMPLE COM9 # Parameter GENESIS Model ED1 Rev 1 # Online parameterization PV % Range: (2) 18.0 % (2) 105.3 in GENESIS Model ED1 Emulsion Detector **GENESIS** Upper Level: Model: Tag: Emulsion Top Level: (2) 20.1 in Description: Genesis ED1 Emulsion Detector Long Tag: Genesis Model ED1 OK (2) 19.1 in Magnetrol S/N: *УУУУУУУУУ* Descriptor: Water Level: Sand Level: 0.0 in Home Device Settings Diagnostics Present Status Event History Advanced Diagnostics %Water Graph Diagnostic Curves Echo History Level Trends 4-20 Trends Legend Percent Water 1:10 pm 80 Water is higher than oil? 100 Distance from Sensor Ref Position Parameters Dafrach Darcant Water Crank

BETA EXAMPLE COM9 # Parameter @ GENESIS Model ED1 Rev 1 # Online parameterization (2) 105.3 in GENESIS Model ED1 Emulsion Detector **GENESIS Upper Level:** PV % Range: 😅 Model: Tag: Description: Emulsion Top Level: (2) Genesis ED1 Emulsion Detector Long Tag: Genesis Model ED1 Water Level: 13.6 in Magnetrol S/N: *ŸŸŸŸŸŸŸŸŸŸŸ* Descriptor: Sand Level: 0.0 in Home Device Settings Diagnostics Present Status Event History Advanced Diagnostics %Water Graph Diagnostic Curves Echo History Level Trends 4-20 Trends Legend Percent Water 100

Distance from Sensor Ref Position

100

Parameters

1:45 pm

80 -

20 -

Dofrank Darroant Water Crank

Percent Water

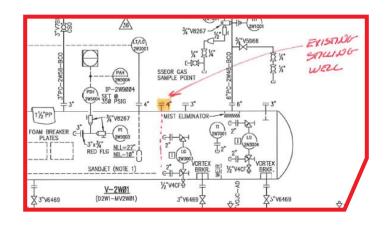
GENESISCUSTOMER COMMENTS

"Not having to clean the vessel and displacer at this time will save us thousands of dollars and save manpower for other work."

"The feedback we have received from our chemical company is it is the best the desalter has looked in a long time."

"We are currently averaging between 50-100 barrels a day of water in the crude. If we cut that in half that could be a savings of \$2500 - \$5000 a day!"

GENESISTEST INSTALLATION


Kuparuk River Oil Field Unit's Location in Alaska

6' (2 meter) diameter Drill Site Separator

GENESISTEST INSTALLATION

GENESISSLUG CATCHER

Kuparuk River Oil Field Unit's Location in Alaska

20' (6 meter) diameter 50' (15 meter) long Slug Catcher

GENESIS MULTIPHASE DETECTOR SLUG CATCHER

GENESIS MULTIPHASE DETECTOR SLUG CATCHER

GENESIS MULTIPHASE DETECTOR SLUG CATCHER

INSTALLATION Canada ALBERTA MANITOBA **Grand Prairie** Alberta, Canada BRITISH COLUMBIA SASKATCHEWAN Edmonton 15' (4.5 meter) diameter Calgary 40' (12 meter) long Separator Winnipeg Vancouver Seattle NORTH DAKOTA WASHINGTON MONTANA Map data

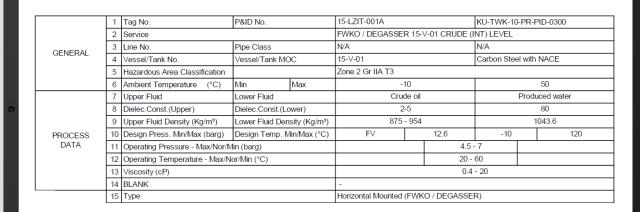
SOLUTIONS

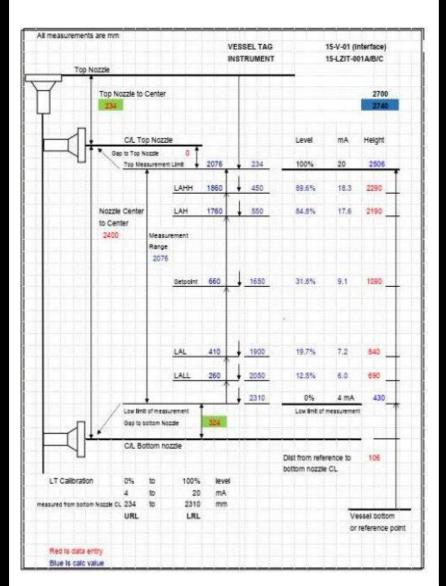
GENESIS MULTIPHASE DETECTOR SEPARATOR

GENESIS

Kuparuk River Oil Field Unit's Location in Alaska

12' diameter (3.5 meter) 40' (12 meter) long Separator


GENESIS MULTIPHASE DETECTOR SEPARATOR


GENESIS MULTIPHASE DETECTOR FREEWATER KNOCK OUT

G M F

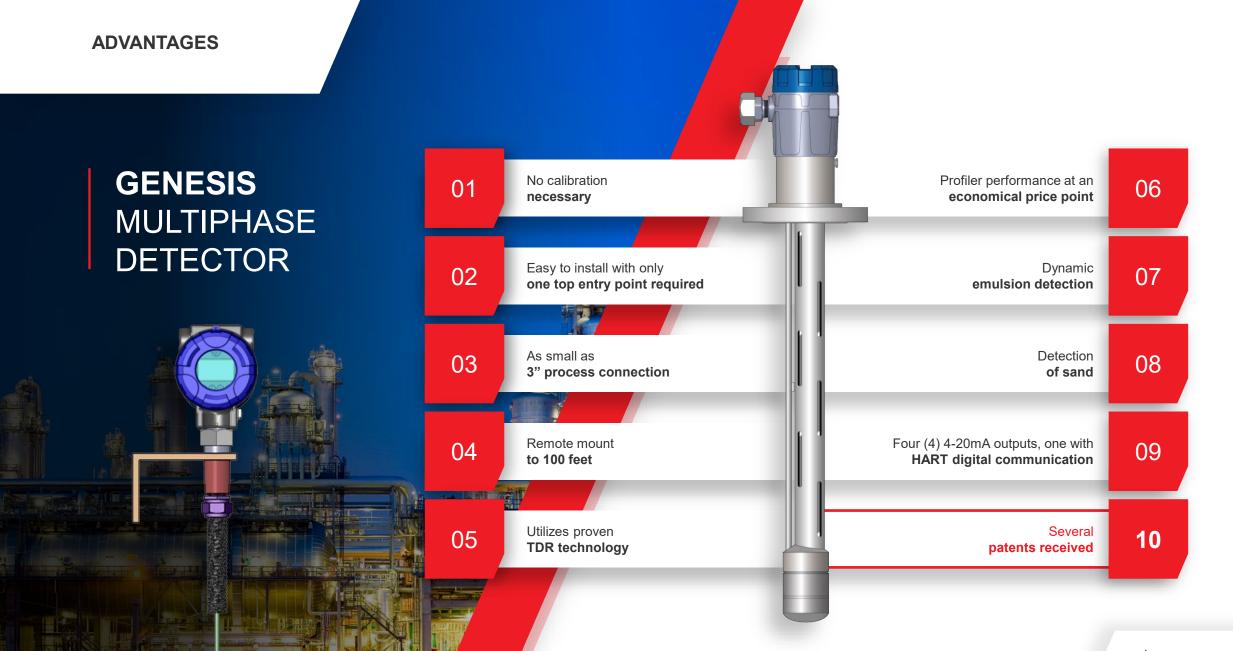
GENESIS MULTIPHASE DETECTOR DESALTER

Prince George, British Columbia, Canada 8' (2.5 meter) diameter 10' (3 meter) long Desalter

LEVEL MEASUREMENT

SOLUTIONS

GENESIS MULTIPHASE DETECTOR North Sea – Offshore Platform


4.32 meter Pentarod – Direct Insertion 2.98 meter Pentarod – Side mounted chamber

GENESIS MULTIPHASE DETECTORAustralia – Offshore Platform

4.74 meter Pentarod in Separator

PATENTS

GENESISMULTIPHASE
DETECTOR

