BANKABLE HYDROGEN TRANSPORT PROJECTS

MIKE MCBRIDE AND VALENTINA DI MAURO

Honeywell UOP

Mike McBride

BD & IPS

Honeywell UOP

Michael.McBride2@Honeywell.com

Valentina Di Mauro

Director BD LOHC

Honeywell UOP

Valentina.DiMauro@Honeywell.com

FORWARD LOOKING STATEMENTS

This presentation contains certain statements that may be deemed "forward-looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current economic and industry conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in this presentation are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, technological, and COVID-19 public health factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, and other developments, including the potential impact of the COVID-19 pandemic, and business decisions may differ from those envisaged by such forwardlooking statements. Any forward-looking plans described herein are not final and may be modified or abandoned at any time. We identify the principal risks and uncertainties that affect our performance in our Form 10-K and other filings with the Securities and Exchange Commission.

BANKABLE INVESTMENT - TODAY BLUE H₂ USGC TO JAPAN OR CALIFORNIA

USGC

Blue Hydrogen

Japan

California

Enables Decarbonization

Comparable CO₂ footprint to electric vehicles

Bankable LOHC investment opportunity

- 1. Economics shown for 120 MMSCFD blue H₂ investment in USGC and LOHC transport to CA at \$9.kg offtake; and includes Jones Act shipping penalties of \$3.5/bbl (each way for LOHC), which is needed when not US based shipping owned / built / operated when moving materials from one place in the US to another
- LCA assessment shows on a per mile driven basis, blue hydrogen made in USGC and transported via LOHC to Japan or California results in comparable CO₂/mile
 for electric vehicles operating on today's electric grids at today's charge/mileage efficiency in both locations
 Honeywell Confidential ©2024 by Honeywell International Inc. All rights reserved.

EXISTING H₂ INFRASTRUCTURE

READY FOR HYDROGEN

Has:

161 operational H₂ fueling stations

Plans:

- 1,000 H₂ fueling stations by 2030
- Grow FCVs from 8k to 800k by 2030

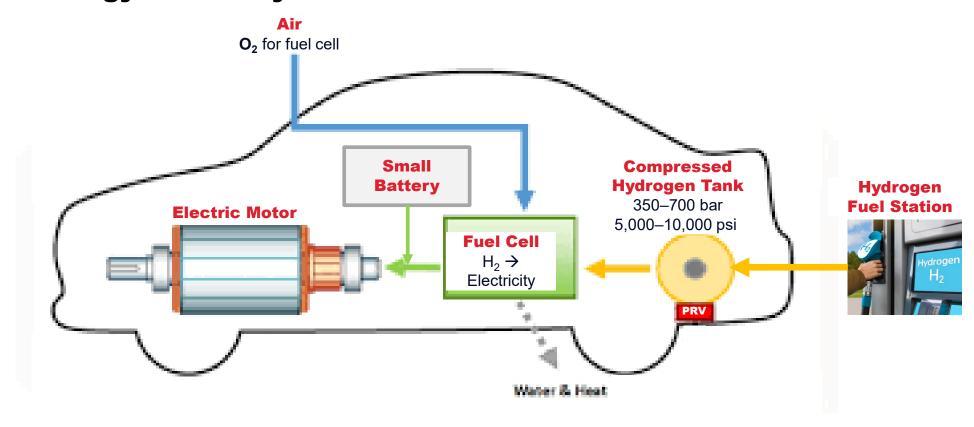
Has:

56 operational H₂ fueling stations

Plans:

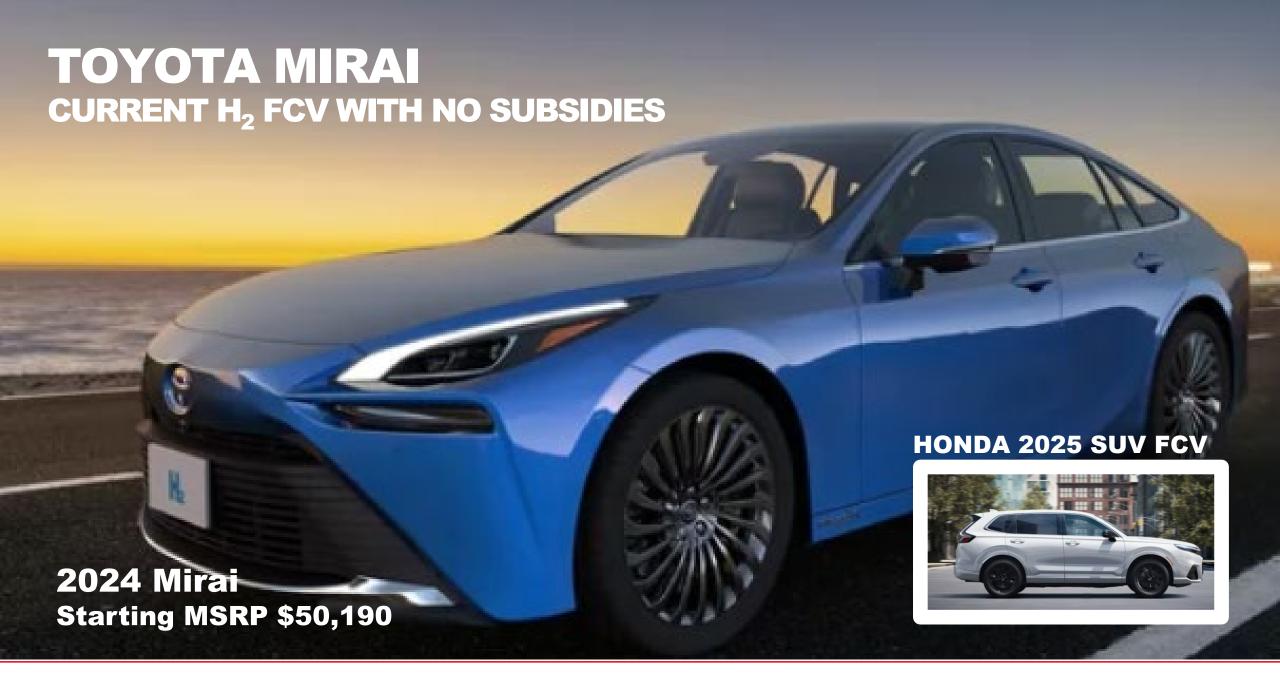
- 200+ H₂ fueling stations by 2030
- Grow FCVs from 12k to 3.6 MM by 2030

Hydrogen infrastructure well underway – needs H₂


- 1. Japan to spur clean hydrogen with \$20 B in subsidies" Nikkei Asia Jan 30, 2024
- 2. California hydrogen filling stations exist in high density zones with greater than 50% of their vehicles (bay area and greater LA and a few between); assuming each station can support 18k vehicles

 per year (12 fill stations at 60% utilization with 6 min fill time and transition; and 12.5kmiles per year at 72 miles/kg hydrogen with 5 kg tank load)

 Honeywell Confidential ©2024 by Honeywell International Inc. All rights reserved.


HYDROGEN FUEL CELL VEHICLES (FCVs) HOW DO THEY WORK?

FCVs have 2X energy efficiency vs ICEs

Reverse electrolysis: $H_2 + O_2 \rightarrow H_2O + Electricity$

- PRV = Pressure Relief Valve
- 2. Small battery: recover deceleration power to assist in acceleration power nickel metal battery
- 3. The H₂ fuel cell system can use 60% of the fuel's energy—corresponding to more than a 50% reduction in fuel consumption compared to a conventional vehicle with a gasoline internal combustion engine.

H₂ FUEL CELL VEHICLES WHAT H₂ PRICE COMPETES WITH GASOLINE?

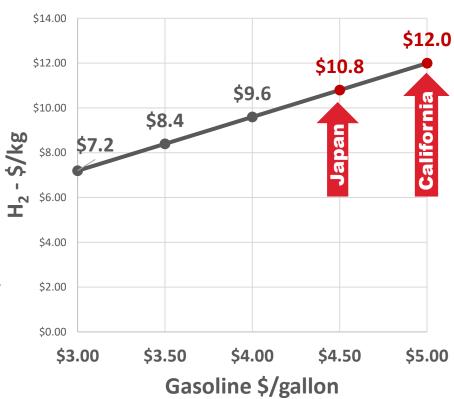
- Toyota Mirai gets 72 miles/kg of H₂ (360-mile range)
- Typical car gets 30 miles/gallon of gasoline

\$5.07/gallon gasoline *LA County April 2024*

\$12/kg H₂ CA Breakeven

(\$5.07/gallon x 1 gallon/30 miles \times 72 miles/kg H_2)

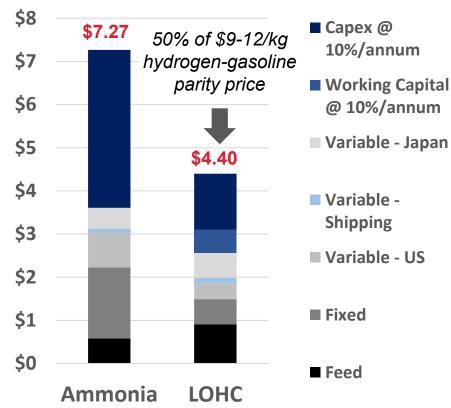
175 Yen/liter gasoline


Japan Jan 2024

\$11/kg H₂ JP Breakeven

(\$4.48/gallon x 1 gallon/30 miles x 72 miles/kg H₂)

\$/kg Breakeven H₂ Price

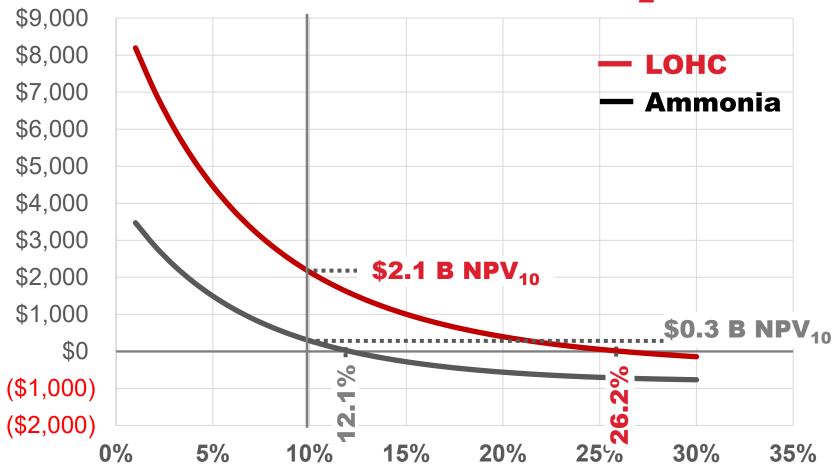


Consumers should be willing to pay \$9 - 12 / kg hydrogen – sets the bar

CASE STUDY - BLUE H₂ USGC TO JAPAN

- \$5 7 / KG H₂ OFFTAKE CREATES VIABLE LOHC WITH 10 20% IRR
- Does not include any capital subsidies from Japan
- Does not include any IRA incentives beyond \$80/t CO₂ capture incentives
- Includes estimated capex and opex based on
 - Hydrogen plant with conventional CO₂ capture & compression to pipeline specifications
 - \$20/tonne CO₂ tolling for short pipeline & storage
 - Converting H₂ into carrier molecule
 - Purchase and operation of ships + one spare
 - Working capital inventory for toluene
 - Converting carrier molecule back into H₂
 - Tankage and other OSBL needs
 - Toluene make-up @ 4% of feed rate for losses

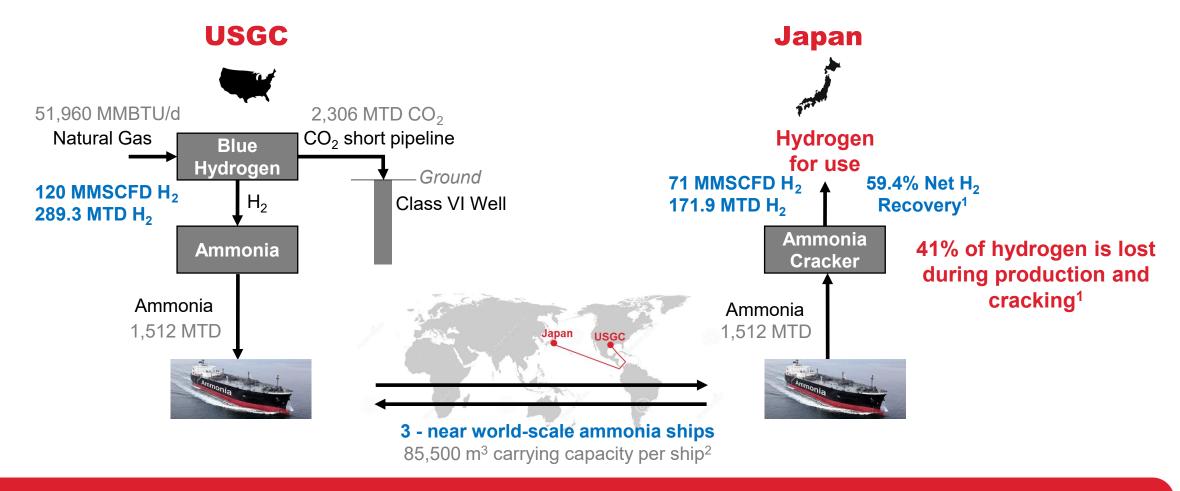
Cost of Production \$/kg of H₂



LOHC delivers lowest cost blue hydrogen from US to Japan – BANKABLE!

Feed cost of production calculations only includes portion of natural gas used to make H₂, and toluene make-up – remainder
of natural gas purchased is considered variable cost of production

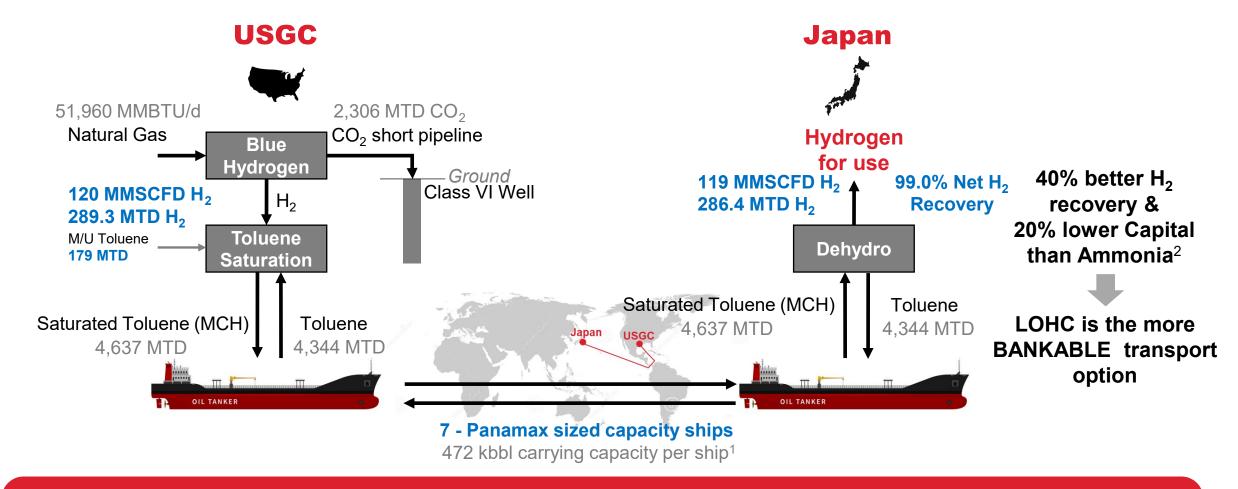
^{2.} IRA – USA Inflation Reduction Act


RESULTS - BLUE H₂ USGC TO JAPAN NPV \$MM VS. DISCOUNT RATE @ \$9 / KG H₂ OFF-TAKE

LOHC delivers \$1.8 billion improvement in NPV₁₀

TECHNOLOGY & LOGISTICS OPTIONS

1. AMMONIA AS A HYDROGEN CARRIER

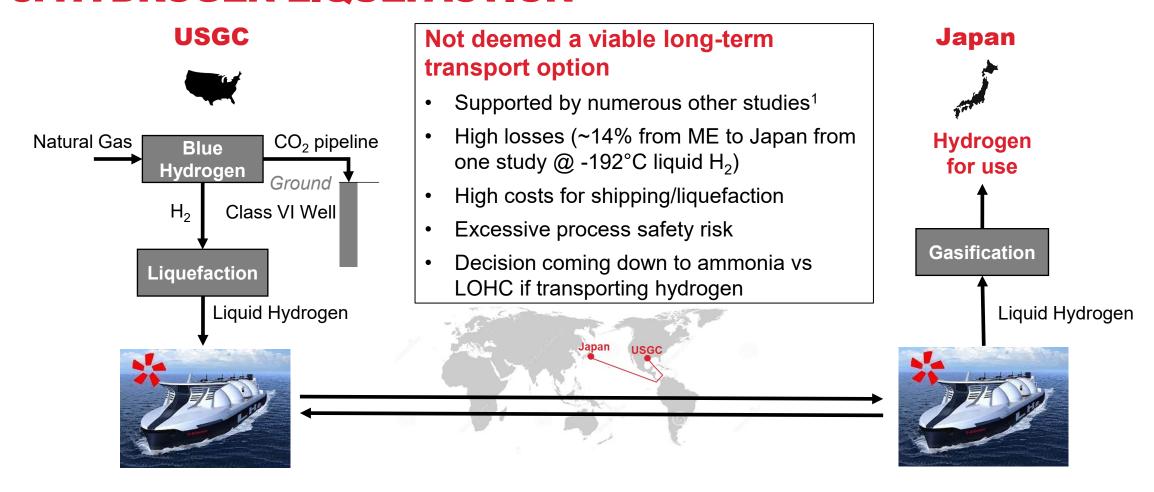

\$2.2 billion CapEx, \$217 MM/yr OpEx \rightarrow \$373 MM/y NCM, 12% IRR, \$0.3 B NPV₁₀

^{1. 93,000} m3 carrying capacity is largest ammonia ship in construction to date; shipping estimates based on 12 knot average speed with 9598 nautical miles one way distance between USGC and Japan...volume set by ammonia load at 0.62 sg, roundtrip calculated at 66.7 days per ship...2 ships on water at given time...extra ship needed for maintenance/OSA...average fuel use estimated at 0.135 tonne of fuel per nautical mile/ship (adjusted for ship size and weight)
2. H₂ losses from ammonia production (~7%) and cracking (~36%) from IHS Markit Hydrogen Deliver Option PRP Report – Dec 2021

Honeywell Confidential - ©2024 by Honeywell International Inc. All rights reserved.

^{3.} Economics shown @ \$9/kg hydrogen offtake

TECHNOLOGY & LOGISTICS OPTIONS 2. LIQUID ORGANIC HYDROGEN CARRIER


\$1.8 billion Capital, \$261 MM/y OpEx \rightarrow \$690 MM/y NCM, 26% IRR, \$2.1 B NPV₁₀

Shipping estimates based on 12 knot average speed with 9598 nautical miles one way distance between USGC and Japan...volume set by MCH load, roundtrip calculated at 66.7 days per ship...2 ships on water at given time...extra ship needed for maintenance/OSA...average fuel use estimated at 0.323 tonne of fuel per nautical mile/ship (adjusted for ship size and weight) Honeywell Confidential - ©2024 by Honeywell International Inc. All rights reserved.

Net, initial capital includes CapEx and working capital inventory for Toluene (3 ship equivalents with 2 on the water at a given time)

Economics shown @ \$9/kg hydrogen offtake

TECHNOLOGY & LOGISTICS OPTIONS 3. HYDROGEN LIQUEFACTION

Considered 3rd choice in other studies – not assessed here

1. Other studies include: The Future of Hydrogen, IEA, June 2019; IEA: Ammonia and LOHC will be Cheaper Options for Shipping Hydrogen than Liquefied H₂ - Even with Reconversion Costs, Hydrogen Insight, January 2023; Hydrogen Delivery Options IHS Markit, Dec 2021

CASE STUDY SUMMARY BLUE H₂ USGC TO JAPAN

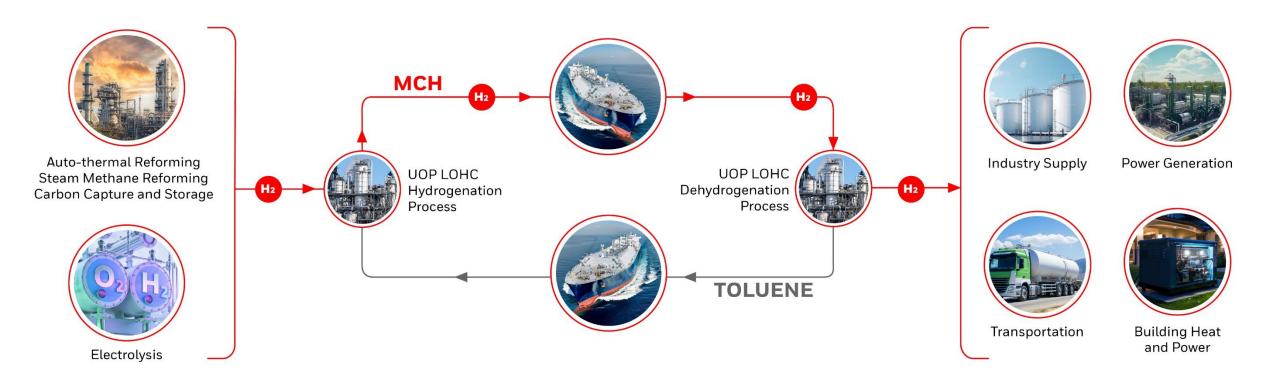
LOHC is revolutionizing the hydrogen economy

- Access to regions with low-cost blue hydrogen production capability
- Access to developing CO₂ sequestration hubs
- No need to wait for green hydrogen

	Ammonia	LOHC	LOHC Advantage	
NCM, \$MM/y	\$373	\$690	1.8 X	
Capital, \$MM	\$2,200	\$1,800	0.8 X	
COP, \$/kg H ₂	7.27	\$4.40	0.6 X	
IRR @ \$9/kg H ₂	12.1%	26.2%	BANKABLE	
NPV ₁₀ @ \$9/kg H ₂	\$288	\$2,145		

LOHC - bankable investments today

H2 SOLUTIONS LOHC COMMERCIAL EXPERIENCE



Honeywell UOP

Honeywell

THE WORLD'S FIRST COMMERCIAL SCALE LIQUID ORGANIC HYDROGEN CARRIER PROJECT

HONEYWELL TECHNOLOGIES ARE HELPING TO BUILD A HYDROGEN POWERED FUTURE

Commercially Proven and Ready at Scale 100 Years of technology expertise and know how

Industry Leading H₂ Purity and Transport Volume Independently evaluated by EPC contractors and multiple customers

Leverage Existing Infrastructure for Implementation Seamless project execution to implement grassroots and revamp design options

Single Source Optimization for Import and Export
Minimize project risk with a holistic approach to technology and ownership of the catalyst supply chain

Honeywell

THE WORLD'S FIRST COMMERCIAL SCALE LIQUID ORGANIC HYDROGEN CARRIER PROJECT

HONEYWELL TECHNOLOGIES ARE HELPING TO BUILD A HYDROGEN POWERED FUTURE

Auto-thermal Reforming Steam Methane Reforming Carbon Capture and Storage

"ENEOS, a leading energy company in Japan, UOP LOHG will develop the Hydrogenation

world's first commercial scale LOHC project using Honeywell's solution at multiple sites..."

Power Generation

Transportation

Building Heat and Power

Commercially Proven and Ready at Scale 100 Years of technology expertise and know how

Industry Leading H₂ Purity and Transport Volume Independently evaluated by EPC contractors and multiple customers

Leverage Existing Infrastructure for Implementation Seamless project execution to implement grassroots and revamp design options

Single Source Optimization for Import and Export
Minimize project risk with a holistic approach to technology and ownership of the catalyst supply chain

HONEYWELL LOHC

LOWEST RISK OPTION RELATIVE TO COMPARABLE ALTERNATIVES

	Honeywell LOHC (MCH)	LOHC (BT/DBT)	NH ₃	Liquid H ₂
Technology Readiness at commercial scale			•	
Carrier availability		•	•	_
Liquid at ambient Temperature and Pressure		•	•	•
Infrastructure	•		•	•
H ₂ Purity				
Retrofit options		•	•	
Flammability				
Health Hazard				
Reconversion costs				
Energy Density				

- Hydrogen Carrier Economics, KBR Advisory Consulting, 2021

⁻ The Future of Hydrogen, IEA, June 2019

⁻ Determining the Production and Transport Cost for H₂ on a Global scale, Collis et al, 2022 - EU Commission assessment of hydrogen delivery options, EU Joint Research Centre, 2021

⁻ Hydrogen transportation- The key to unlocking the clean hydrogen economy, Roland Berger, 2021

Honeywell Confidential - ©2024 by Honeywell International Inc. All rights reserved.

HONEYWELL LOHC SOLUTION COMMERCIALLY PROVEN TECHNOLOGY AND CATALYST

MCH

UOP HYDROGENATION

45+ commercial reference units on similar technology for Benzene/Aromatics processing

TOLUENE

UOP DE-HYDROGENATION

1000+ commercial reference units on similar technology for Heavy Naphtha processing

ADVANTAGES OF HONEYWELL LOHC

- Commercially proven and ready to execute at large scale
- Single source optimization for import and export
- Maximum H₂ transported
- Minimum carrier makeup
- No catalyst makeup

Thank You

Valentina Di Mauro
Director BD LOHC
Honeywell UOP
Valentina.DiMauro@Honeywell.com

Mike McBride

BD & IPS

Honeywell UOP

Michael.McBride2@Honeywell.com

Follow us:

https://www.uop.honeywell.com/

https://www.youtube.com/user/Honeywell

https://www.linkedin.com/company/uop

https://www.accessuop.com/

https://x.com/HoneywellUOP

