

Fueling the Future: The Progress of SAF Solutions for the Decarbonization of Aviation

Speakers

Dr. Gordon Chiu **Product Manager** Renewable Fuels

Edmund Woo

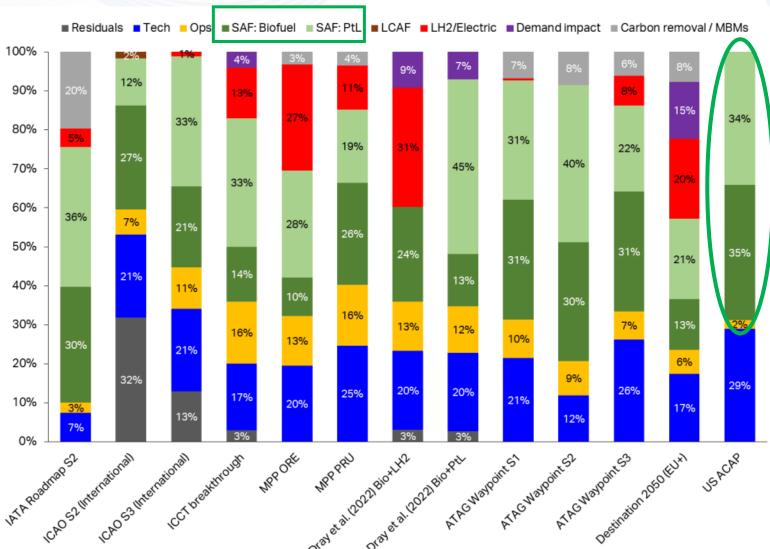
Flow Behavior, R&D

Nicole Lock

Group Product Manager Group Product Manager Molecular & Atomic Analysis

Dr. Connor Douglas

Head of Product Process Analytics

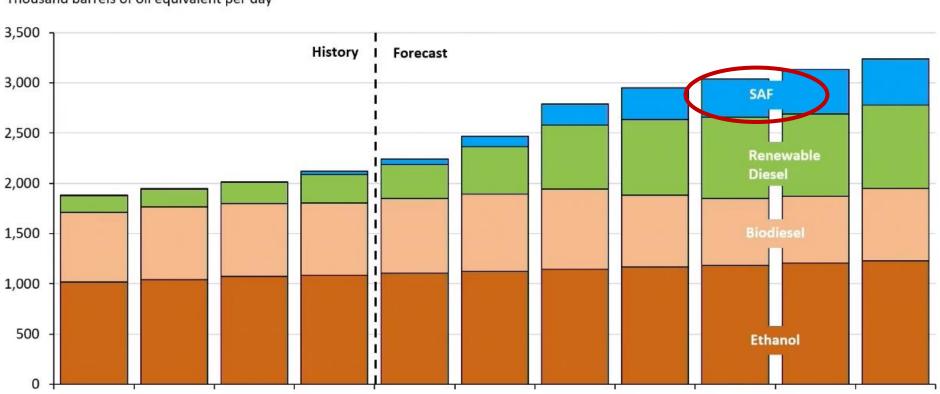


Agenda

- I. Current Market and Specification
- II. Freezing point, Viscosity, Thermal Oxidation
- III. Current GC methodology and how GCxGC could be the future

Comparative Roadmap

Ref: 2024 IATA



Growth Trajectory

Ref: 2024 Rystad Energy

Recent growth has already been dominated by renewable diesel SAF and renewable diesel output is likely to reach 1.5 million bpd in early 30s

Global biofuels production by product, history and current pathway Thousand barrels of oil equivalent per day

2025

2026

2027

2028

2029

2030

Source: Rystad Energy research and analysis

2020

2021

2022

2023

2024

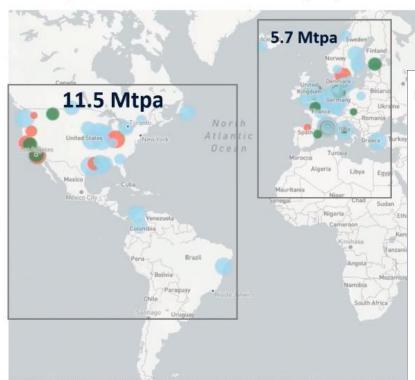
Current SAF Production

2021 2024f Year 2019 2020 2022 2023e 1.5*** 0.45-0.5** Estimated (625 million (1.875 bn 0.24SAF Output < 0.02 0.05 0.08 liters or 6% liters or 3% (Mt) RF output) RF output) Global 287 157 189 233 286* 301 Jet Fuel (Mt)* SAF % of 0.2%* 0.5% Global Jet < 0.01% 0.03% 0.04% 0.1% Fuel

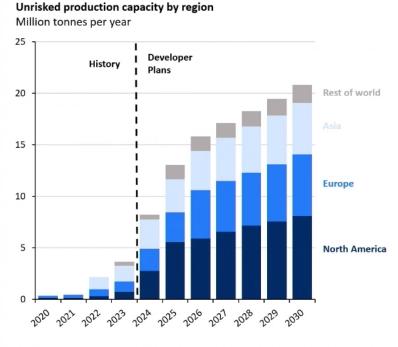
Ref: 2023 IATA

2023 SAF Production:
~0.5Mt of SAF
in 2023
Average SAF
output only ~3%
of total Renewable
Fuel output
Need incentives for

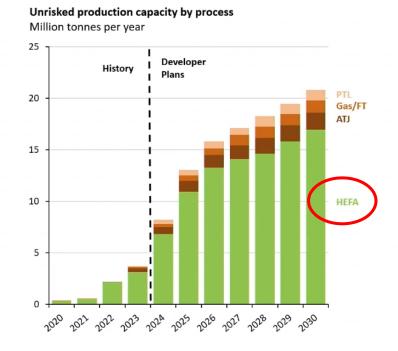
optimal SAF output



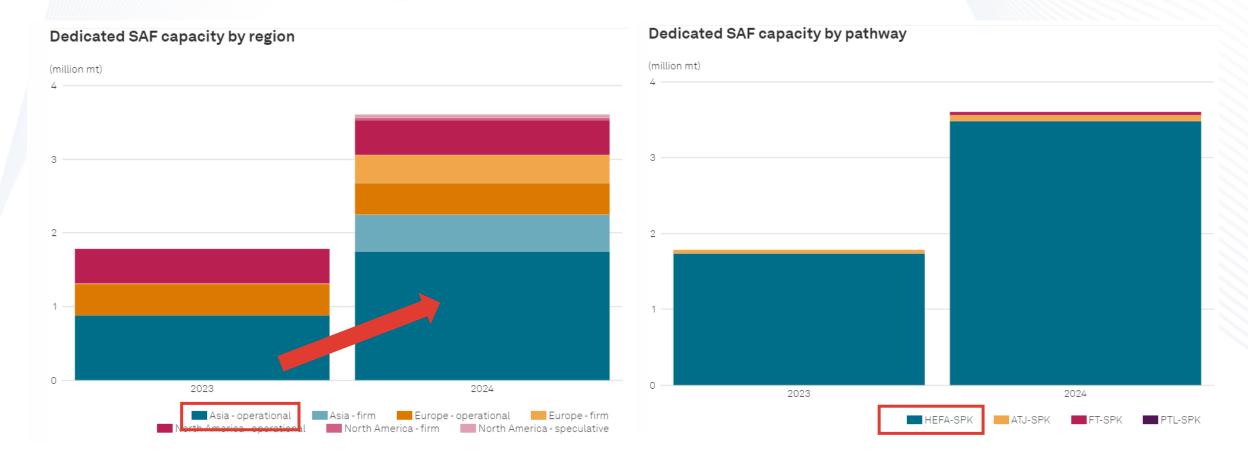
Future SAF Production


Ref: 2024 Rystad Energy

Sustainable Aviation Fuels attracted the most attention in the bioenergy space lately ~150 operational and announced projects around the world, U.S. steps up as a market leader

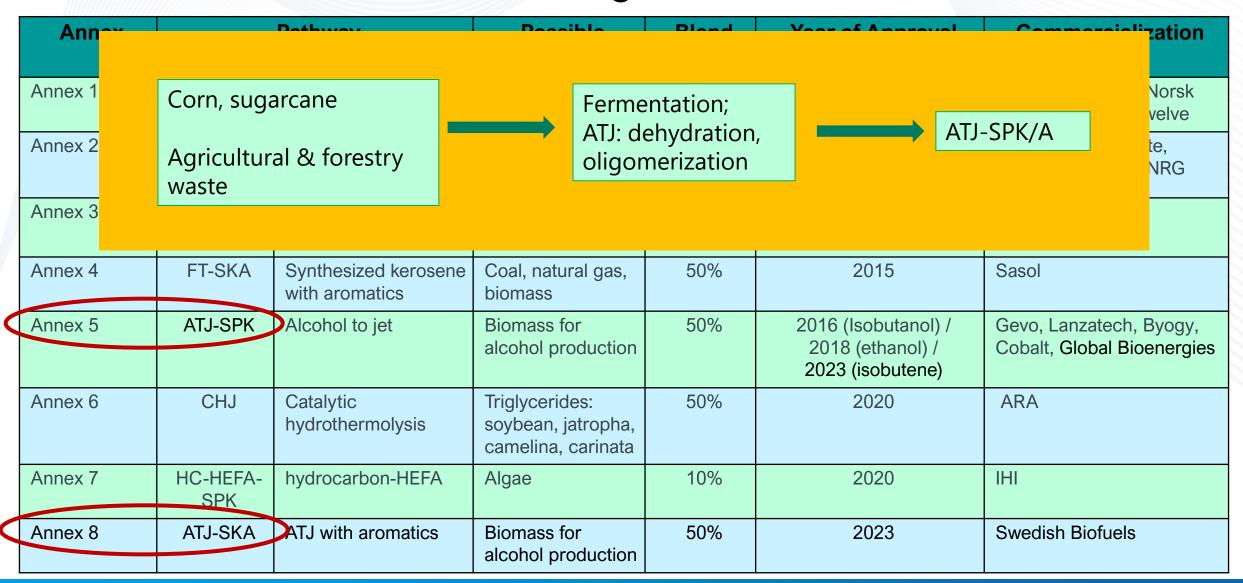


Based on announced projects, global SAF capacity might reach 20 mtpa in the second half of 20s


Source: Rystad Energy research and analysis

2023-4 SAF Production

Ref: 2024 S&P



ASTM D7566 Pathways

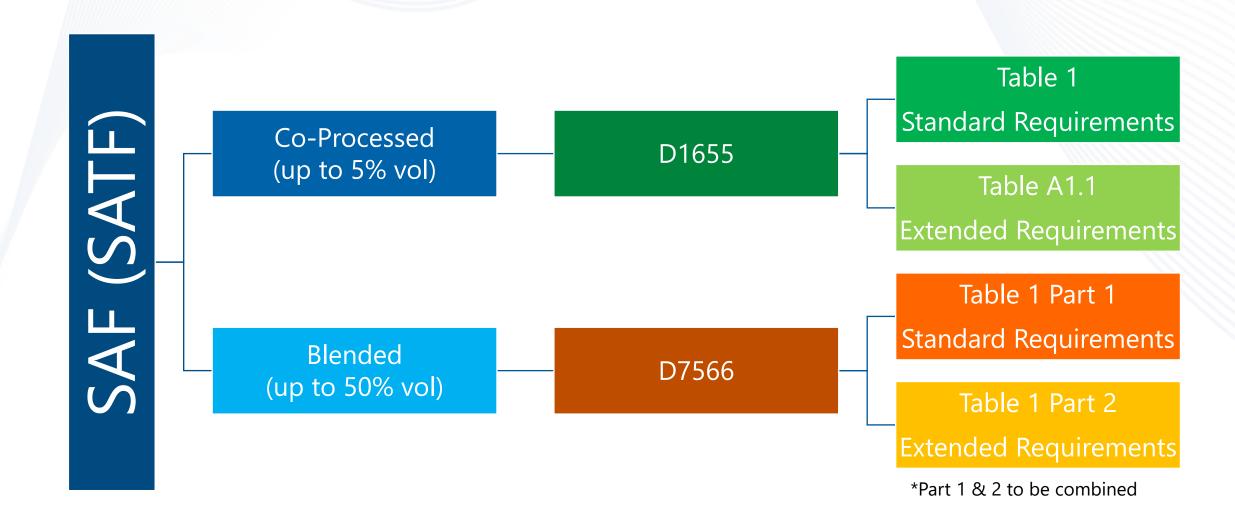
	Annex			Pathway	Possible Feedstocks	Blend ratio (v)	Year of Approval	Commercialization
	Annex 1		FT	Fischer-Tropsch	Coal, natural gas, biomass	50%	2009	Fulcrum, Velocys, Norsk eFuels, Infinium, Twelve
	Annex 2		HEFA	hydroprocessed esters and fatty acids	Bio-oils, animal fat, recycled oils	50%	2011	World Energy, Neste, TotalEnergies, SkyNRG
4	Annex 3		SIP	Synthesized iso-	Riomass used for	10%	2014	TotalEnergies
	Ann		int, waste fa	ats & oils	Hydropro	cessing	HEFA-S	ch, Byogy, Bioenergies
					camelina, carinata			
9	Annex 7		HC-HEFA- SPK	hydrocarbon-HEFA	Algae	10%	2020	IHI
	Annex 8		ATJ-SKA	ATJ with aromatics	Biomass for alcohol production	50%	2023	Swedish Biofuels

ASTM D7566 Pathways

ASTM D7566 Pathways

	Annex	(Pathway	Possible Feedstocks	Blend ratio (v)	Year of Approval	Commercialization
9	Annex 1		FT	Fischer-Tropsch	Coal, natural gas, biomass	50%	2009	Fulcrum, Velocys, Norsk eFuels, Infinium, Twelve
	Annex 2		HEFA	hydroprocessed esters and fatty acids	Bio-oils, animal fat, recycled oils	50%	2011	World Energy, Neste, TotalEnergies, SkyNRG
	Annex 3		SIP	Synthesized isoparaffins	Biomass used for sugar	10%	2014	TotalEnergies
4	Annex 4		FT-SKA	ynthesized kerosene with aromatics	Coal, natural gas, biomass	50%	2015	Sasol
	Annex 5		ATJ-SPK	Alcohol to jet	Biomass for	50%	2016 (Isobutanol) /	Gevo, Lanzatech, Byogy,
	Annex 6		ricultural, F ste; MSW	orestry	Gasification	Synga	s FT	FT-SPK/A
	Annex 7			PTL / eFuels: H2,	CO2			
	Annex 8							

Recent Trends


- 1. Airlines/Airport/Fuel traders + SAF producers : Offtake Agreements
 - 1. Southwest & P66 Rodeo; Air New Zealand & Neste, Ryanair & ENI, IAG & Twelve (PTL)
 - 2. Sumitomo + JX Nippon & Strategic Biofuels (Louisiana)]
 - 3. Jet2 & Shell (Stansted)
- 2. Direct Investments from airlines
 - Southwest SAFFiRE Renewables (ATJ), LanzaJet
- 3. Oil Companies + Agribusiness partnership
 - 1. Diamond Green = Valero & Darling Ingredients
 - 2. Repsol & Bunge; ENI in Africa
 - 3. Bangchak & Sumitomo, BBGI; Idemitsu & Zen-noh Grain corp.
 - 4. Cargill (Heartwell); Ecoceres
- 4. National & regional green fuel standards
 - New Jersey, New Mexico, Nebraska
- 5. Search for new feedstock
 - Camelina, cover crops, marginal crops
- 6. New analytical challenges and Solutions

Freezing Point & Viscosity

ASTM Specifications

Co-Processed SAF – ASTM D1655

TABLE 1 Detailed Requirements of Aviation Turbine Fuels^A

Property		lot A or lot A 1	Test Methods ^B	
Property	Jet A or Jet A-1		Referee	Alternative
Freezing point, °C	max	–40 Jet A ^{M,N}	D2386/IP 16	D5972/IP 435 D7153/IP 529, or
Viscosity –20 °C, mm²/s ^O	max	–47 Jet A-1 ^{M,N} 8.0	D445 or IP 71, Section 1	D7042 ^P or D7945

TABLE A1.1 Extended Requirements of Aviation Turbine Fuels Containing Co-hydroprocessed Esters and Fatty Acids Fischer-Tropsch Hydrocarbons, or Hydrocarbons from Esters and Fatty Acids A. B.

Dranarty		Jet A or Jet A-1			
Property			Referee	Alternative	
Viscosity −40 °C mm²/s ^G	max	12.0	D445 or ID 1, Sect	ion 1 ^H D7042 ^J or D7	945
Freezing point °C		Table 1 freezing point limits apply	D5972/IP 435	D7153/IP 529	or D7154 or IP 528

Blended SAF – ASTM D7566

TABLE 1 Detailed Requirements of Aviation Turbine Fuels Containing Synthesized Hydrocarbons^A

	P	art 1—Basic Requirements		
Property		Jet A or Jet A-1	Test Method ^B	
Freezing point, °C	Max	-40 Jet A ⁷	D5972/IP 435, D7153/IP 529, D7154 or IP 528,	
11 11 00 00 01 V		-47 Jet A-1 [/]	or D2380 IP 16	
Viscosity –20 °C, mm²/s ^K	Max	8.0	D445 or IP 71, Section 1, D7042 ^L or D7945	
	Par	t 2—Extended Requirements		
Property		Jet A or Jet A-1	Test Method ^B	
Viscosity –40 °C, mm²/s	Max	12	D145 IP 71, Section 1, W D7042, Z or D7945	
			PHASE	
			TECHNOLOGY	

Innovations in phase analysis solutions

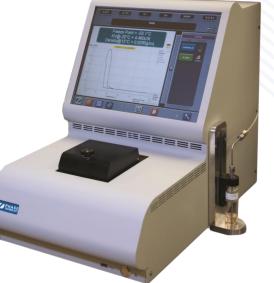
Phase Technology JFA-70Xi

Jet Fuel Analyzer

JFA-70Xi

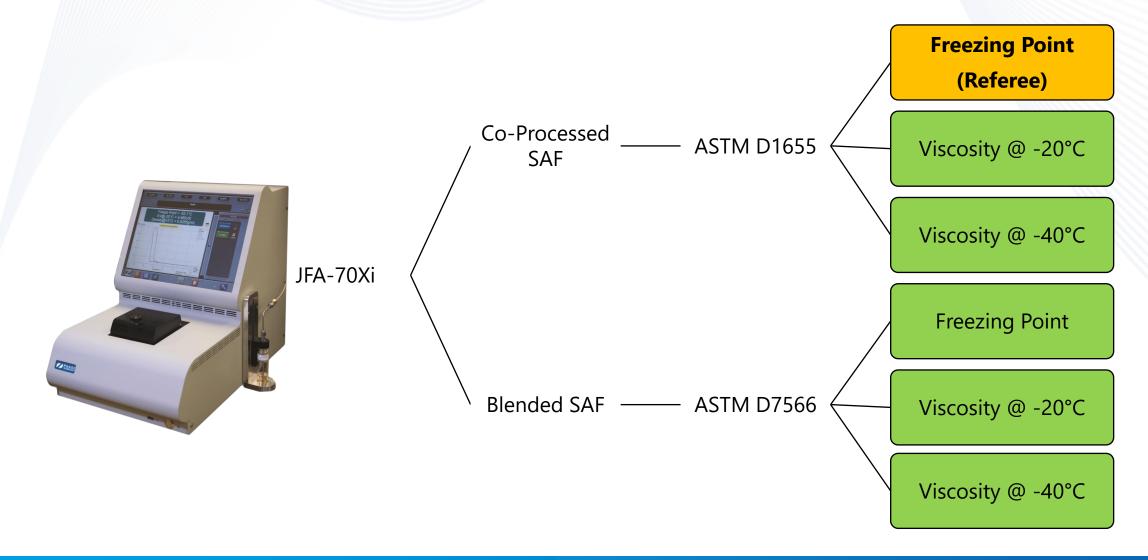
- The world's first 3-in-1 analyzer that combines:
 - Freeze point (<u>**D5972**</u>)
 - Viscosity @ -20°C and -40°C (<u>**D7945**</u>)
 - Density (D7777)
- Available as 5-in-1 with additional functions:
 - Cloud point (D5773)
 - Pour point (D5949)
- Automatic sample injection
- Automatic cleaning (no solvent)

ASTM D7945 Viscosity Method


-20°C precision	Reproducibility	Repeatability	Bias
D7945 (Phase Technology)	0.4%	0.2%	No
D445 (Manual)	1.9%	0.7%	-
D7042	3%	1.7%	Yes

Has full precision at -40°C

The only ASTM test method that calculates Temp@12 cSt


Accepted into ASTM D1655 and D7566 in 2016

Included in UK Def Stan 91-91 (Issue 10) in 2018

JFA-70Xi and SAF

Phase 70Xi Advantage

Speed Advantage

Fastest test speeds of any auto or manual methods.

Quick and easy to use

Increased Productivity

Multiple test methods in one single unit

Accurate & Reliable

Best precision of any automatic or manual method

Versatility

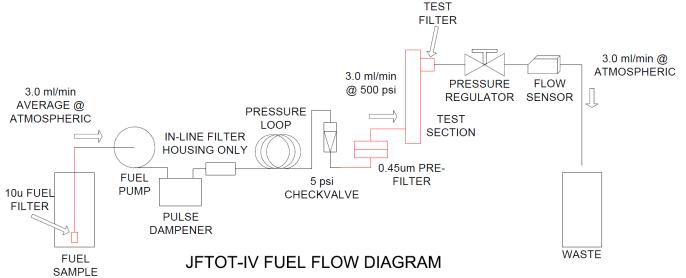
Upgradable to include functions and options

Thermal Oxidation Test System

Alcor JFTOT-IV, OptiReader & Intelligent Heater Tubes

Jet Fuel Thermal Oxidation Tester

JFTOT IV


- Enhanced safety features
- Smaller, streamlined package
- Significantly increases operator productivity
- Large, global installed base of > 1,000 JFTOT instruments
- Strictly following ASTM D3241, IP 323, and ISO 6249

JFTOT-IV Updates

- Dedicated SAF pressure loop simple modification to reduce length of pressure loop in JFTOT to reduce system pressure (prior to the test section)
- Already proven and implemented modification for use with higher viscosity military fuels

Heater Tube Scanner

OptiReader

- MultiWave Ellipsometer method
 - Unaffected by roughness variation
 - No false prediction due to periodicity
 - Excellent at handling wide dynamic range of thickness
- Fast measurement of deposits
- Unified report with Intelligent Heater Tubes
- Accepted into the D1655 and D7566 jet fuel specifications

Best-in-Class

Jet fuel Thermal Oxidation Testing System

Current GC methodology and how GCxGC could be the future

Current Specifications

D7566 Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

Composition specifications in D7566:

property	specif	test method	
Aromatics	Min 8 % volume	Max 25% volume	D2425/D8305
Aromatics	Min 8.4% volume	Max 26.5% volume	D6379

Annex specifications with method

(HC-HEFA SPK)

property

cycloparaffins

Aromatics

Paraffins

A1. FISCHER-TROPSCH HYDROPROCESSED SYNTHESIZED PARAFFINIC KEROSINE (FT-SPK) A2. SYNTHESIZED PARAFFINIC KEROSINE FROM HYDROPROCESSED ESTERS AND FATTY ACIDS (HEFA-SPK) A5. ALCOHOL-TO-JET SYNTHETIC PARAFFINIC KEROSENE (ATJ-SPK) specification property test method Max 15% mass D2425 cycloparaffins **Aromatics** Max 0.5% mass D2425 Paraffins report % mass D2425 A3. SYNTHESIZED ISO-PARAFFINS FROM HYDROPROCESSED FERMENTED SUGARS (SIP) specification test method property A4. SYNTHESIZED KEROSINE WITH AROMATICS DERIVED BY ALKYLATION OF LIGHT AROMATICS FROM Saturated hydrocarbons Min 98% mass NONPETROLEUM SOURCES (SPK/A) specification **ASTM** test method Min 97% mass property Farnesane Max 20% volume **Aromatics** D1319 Hexahydrofarnesol **Aromatics** Max 21.2% volume D6379 Olefins Paraffins Report % mass D2425 **Aromatics** cycloparaffins Max 15% mass D2425 **Aromatics** Max 20 % mass D2425 A6. SYNTHESIZED KEROSINE FROM HYDROTHERMAL CONVERSION OF FATTY ACID ESTERS AND FATTY ACIDS (CHJ) property specification ASTM test method Min 8% volume Max 20% volume D1319 Aromatics Min 8.4% mass Max 21.2% mass D2425/D6379 Aromatics **Paraffins** report % mass D2425 report % mass D2425 cycloparaffins

A7. SYNTHESIZED PARAFFINIC KEROSINE FROM HYDROPROCESSED HYDROCARBONS. ESTERS AND FATTY ACIDS

specification

Max 50% mass

Max 0.5% mass

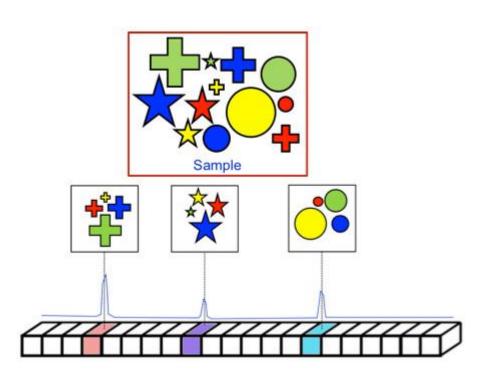
report % mass

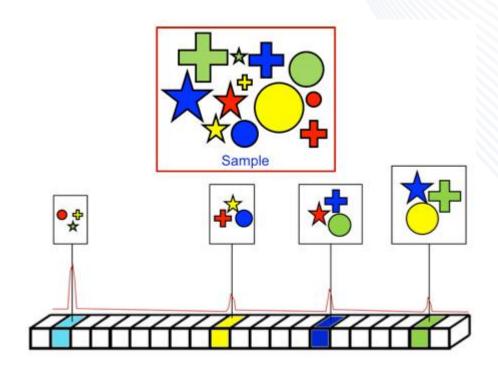
ASTM test method

D2425

D2425 D2425

GCxGC fundamentals

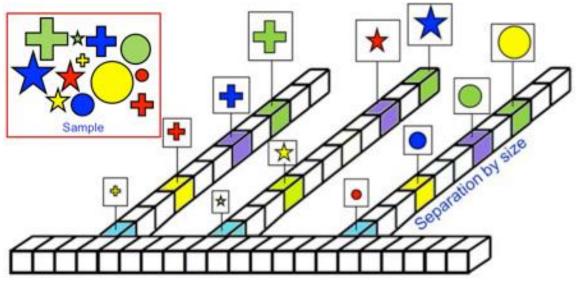

- What led users looking for alternatives?
- Why is GCxGC a strong contender for the future?



How does GCxGC work?

One dimension separation by shape (*Polarity*)

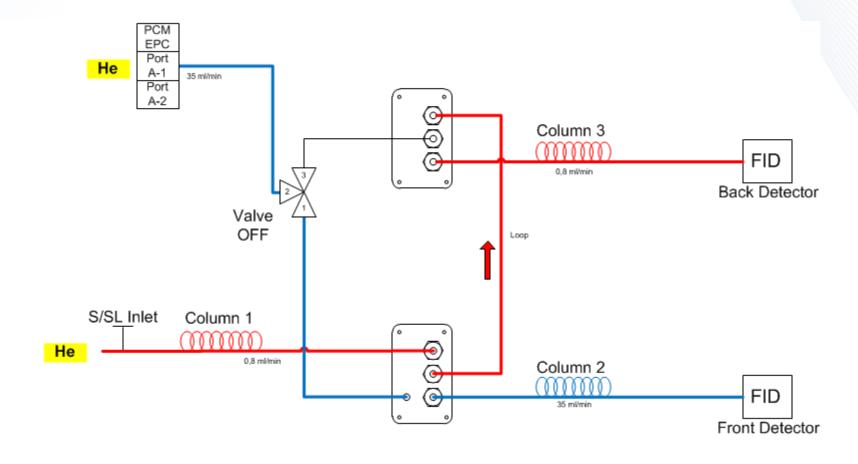
One dimension separation by size (Boiling Point)


Note that neither of the two separations can separate all analytes within the sample.

How does GCxGC work?

Two-dimension separation by shape and size

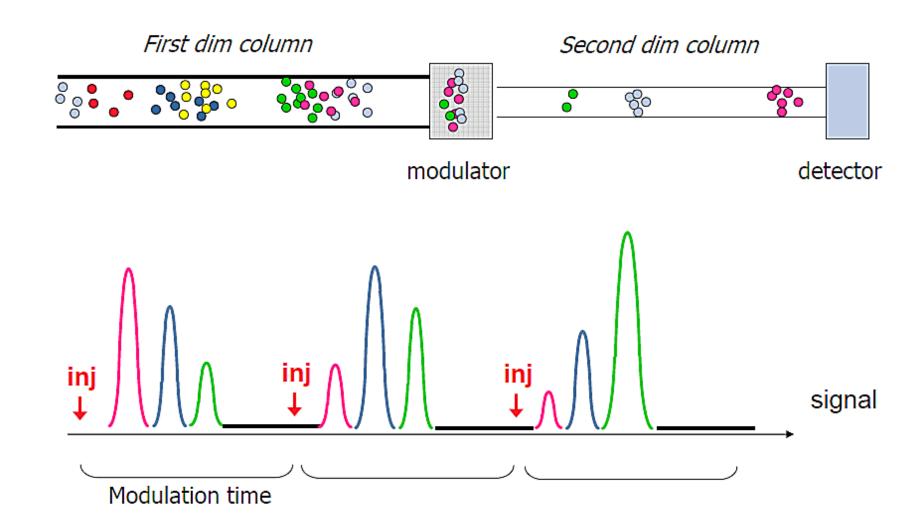
(Polarity and Boiling Point)


Separation by boiling point

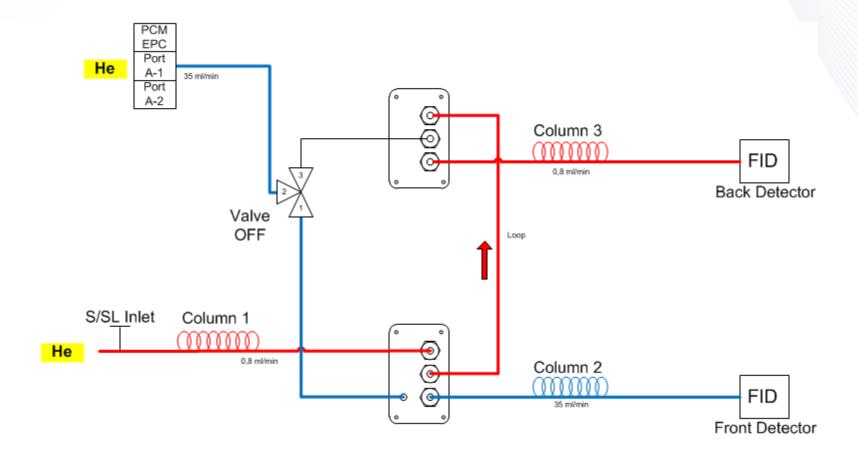
Combination of separation types:

- "Orthogonal" column chemistries
 e.g. polarity & boiling point
- Every portion of the eluate coming from the 1st column undergoes a further 2nd separation
- Significantly improves separation power of the chromatographic system

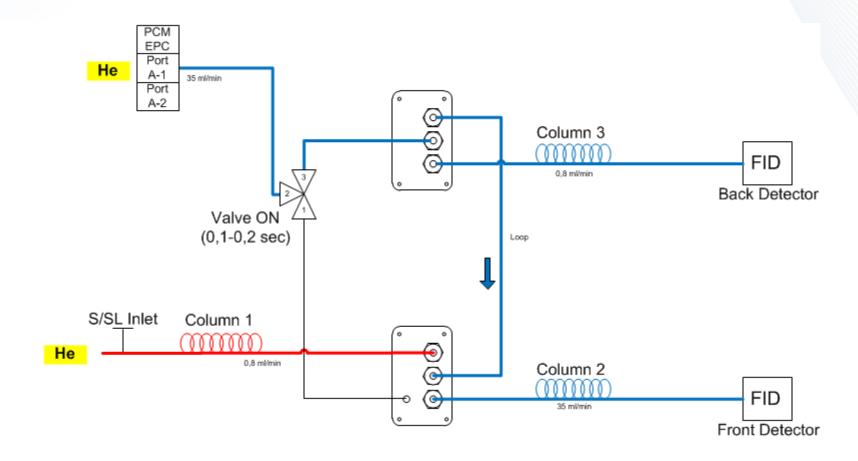
System example - Fill



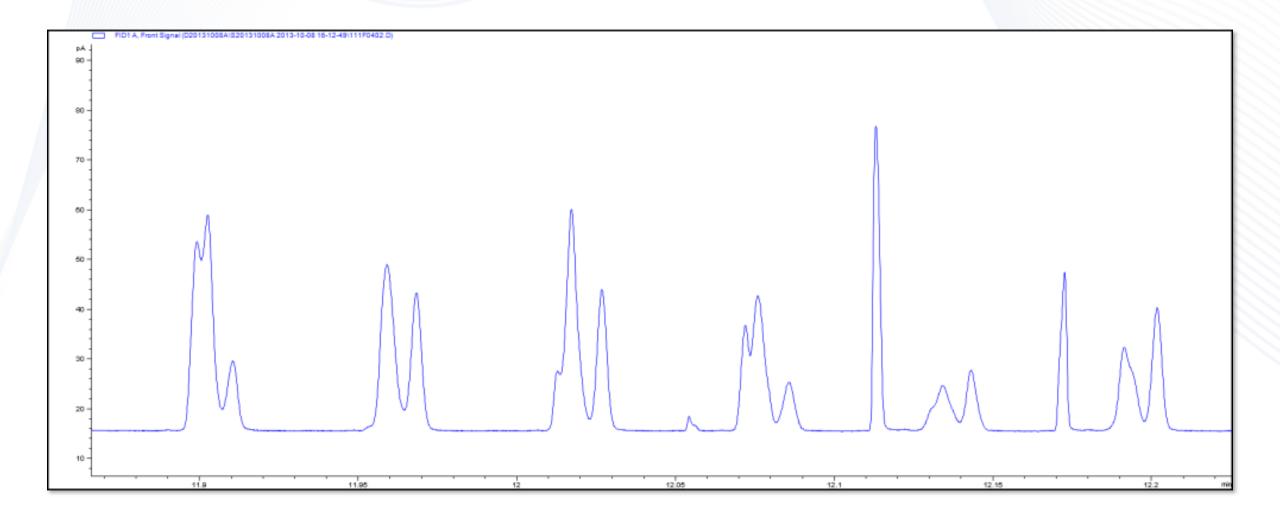
System example - Flush



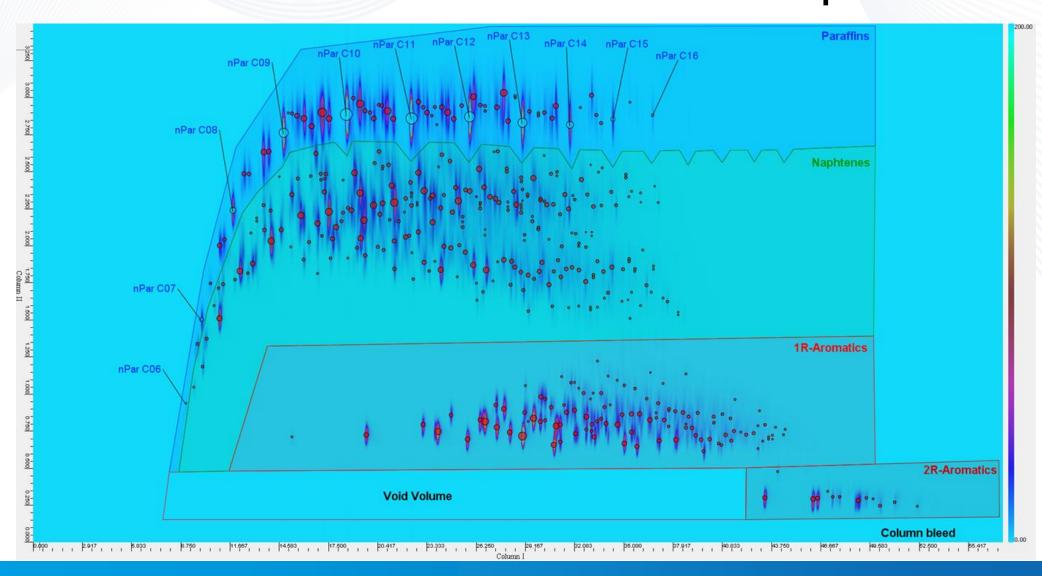
Modulation



System example - Fill



System example - Flush



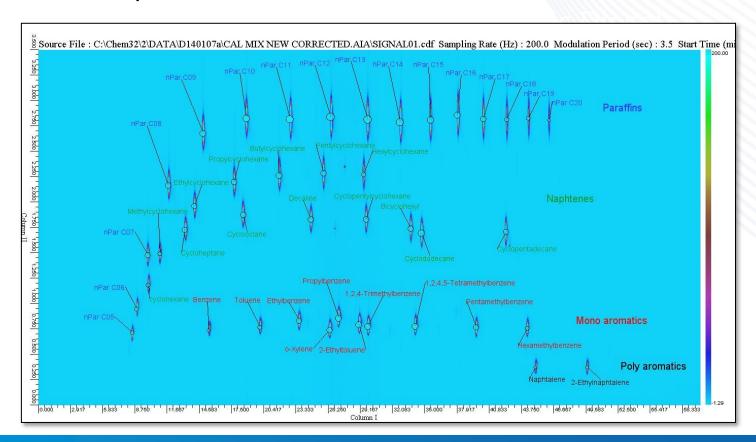
How will I see this on my data system?

Data Processing: GCxGC software and identification example

Current ASTM work

ASTM D8396 Standard Test Method for Group Types Quantification of Hydrocarbons in Hydrocarbon Liquids with a Boiling Point between 36°C and 343°C by Flow Modulated GCxGC-FID

- Diesel and jet fuel market interested in composition information
- Group Types Quantification of Hydrocarbons in mid distillates
- Technology: GCxGC
- Generic method for flow modulation though thermal is being tested.
- Free choice of columns and software

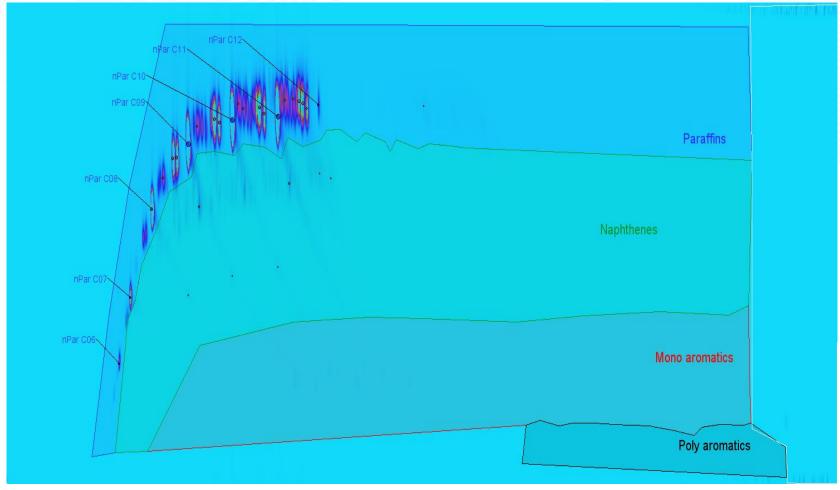

Current published method

PAC worked with ASTM on the first method for GCxGC

- Published in 2022
- •Initial version of method with interim precision statement

TABLE 1 Typical Chromatographic Operating Parameters Used in Developing the Test Method

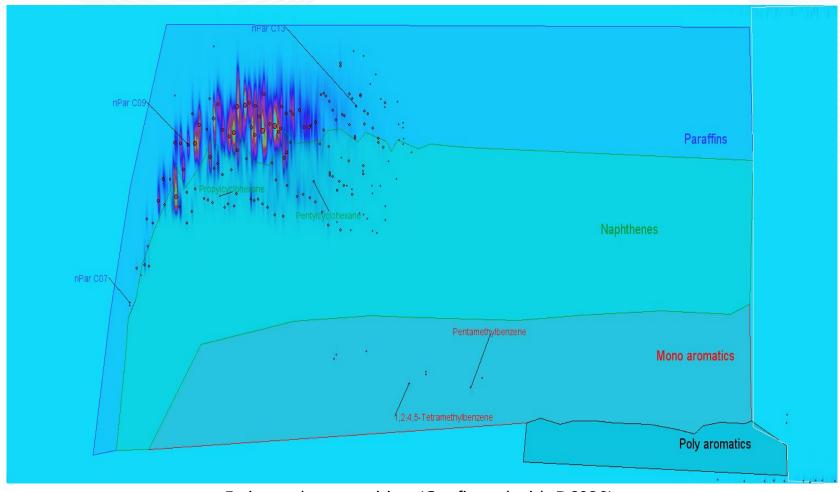
Developing the Test Method						
	Description					
	Front			S/SL Inle	et	
Inlets	Heater			325 °C	325 °C	
illieto	Carrier Gas			Hellum		
	Split ratio			1:200		
	1 st dimension polar col					
	30 m x 250 µm polar colu	umn (e.g.,	polyethyle			
	Flow 1 mL/mln					
_	Flow 35 mL/mln					
Columns						
	Monitor column					
	Deactivated Fused Silica					
	Flow			1 mL/mlr	1	
	Temperature			40 °C		
	Equilibration time			1 min		
			°C/mln	Next °C	Hold	
				40	min	
				40	7.5	
Oven	Oven Ramp		3.2 4.2	45	0	
				120	0	
			4.7	165	0	
			5.2	200	0	
	Total are trans		5.7	270	3	
	Total run time Front	Front FI	n .	Back FID	57.5	
	Heater	325 °C		325 °C	,	
Detector	H2 flow	35.0 mL	/min	35.0 mL/	min	
Detector	Air flow			350.0 ml		
	Make-up flow	350.0 mL/mln 20.0 mL/mln		20.0 mL/		
	Valve Idle State	Off	/IIIIII	20.0 MD		
Flow Modulation delay 0.1 min						
Modulator	Modulation period	3.5 8				
modulator	Inject time	0.18				
	rigoss umo	0.10				



Pilot study information

- 17 participating laboratories
- Wide variety in configurations:
 - Modulation style: Flow and Thermal tested
 - Column configuration: Normal Phase and Reversed Phase
 - Software: Commercial brands and in-house created
 - Detection type: area detection, blob detection, and both
- Reported properties:
 - Iso-Paraffins
 - normal-Paraffins
 - Naphthenes
 - 1R Aromatics
 - 2R aromatics
 - 3R aromatics

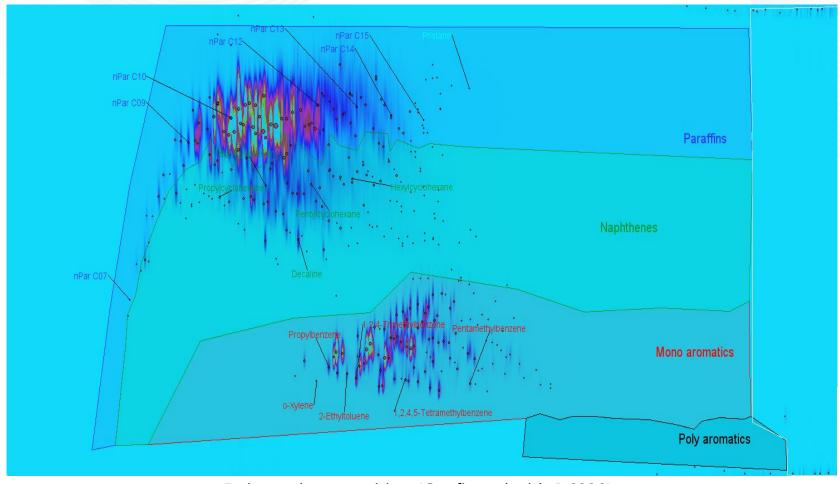
Sample 1: FT-SPK (LTFT, GTL)



Estimated composition (confirmed with D6839):

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
31%	68%	0.5%	0.2%	0%

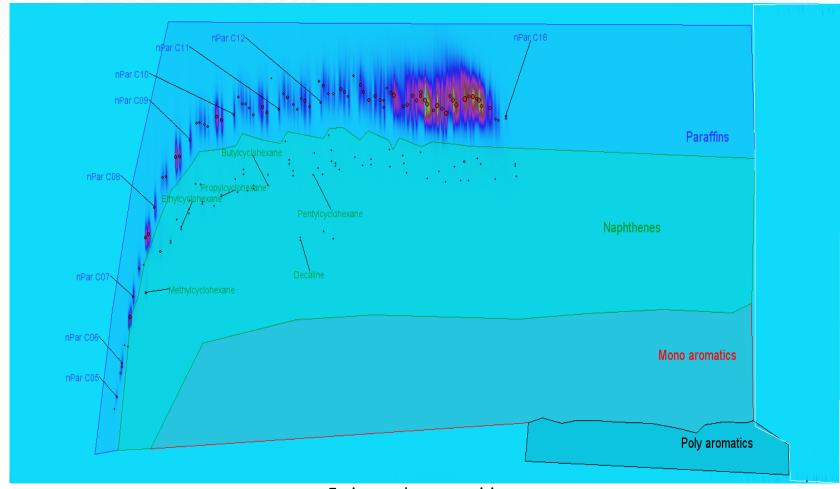
Sample 2: FT-SPK (HTFT)



Estimated composition (Confirmed with D6839):

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
96%	0.5%	3%	0.2%	0%

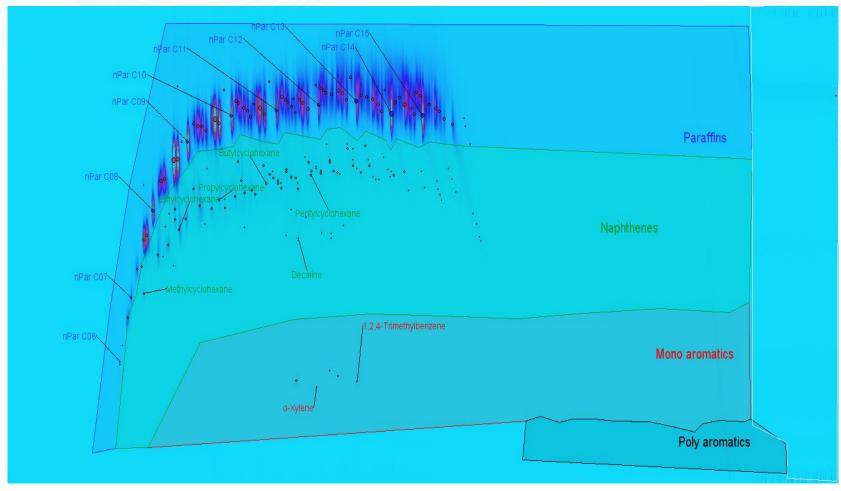
Sample 3: FT-SPK/A (HTFT)



Estimated composition (Confirmed with D6839):

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics	
77%	2%	4%	18%	0%	

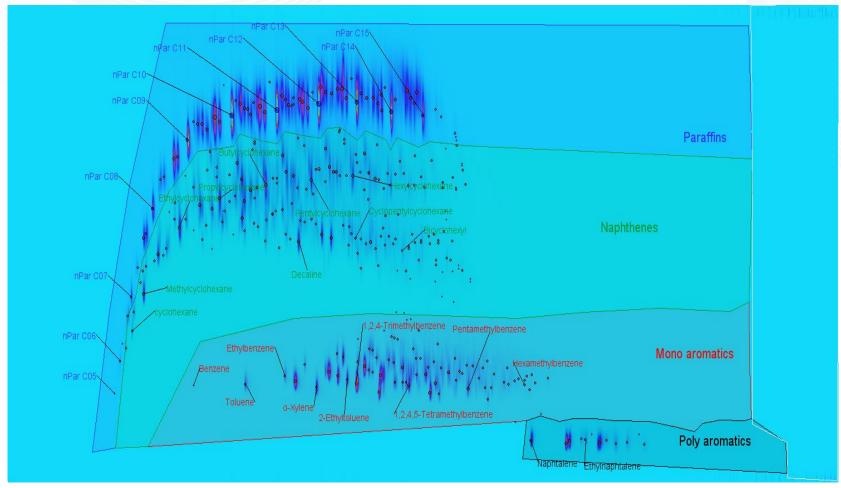
Sample 4: "SAF"



Estimated composition:

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
95%	4%	1%	0.5%	0.1%

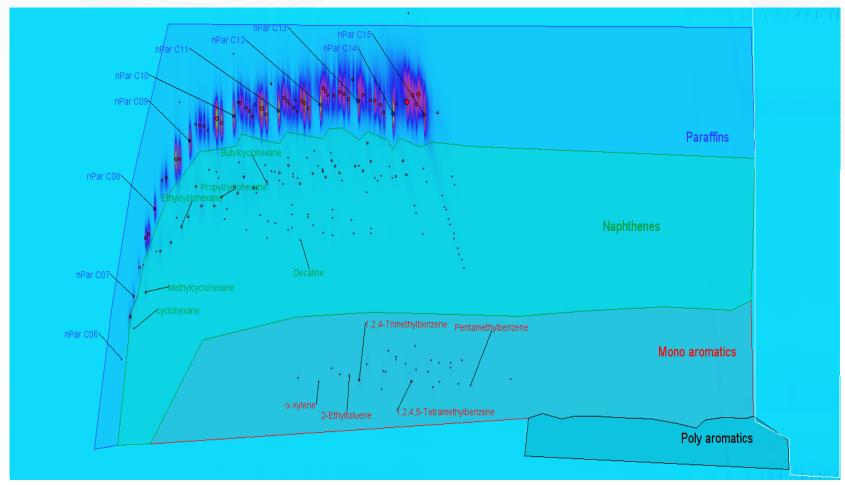
Sample 5: "SAF"



Estimated composition:

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
78%	18%	3%	0.2%	0.1%

Sample 6: Jet A-1 SAF



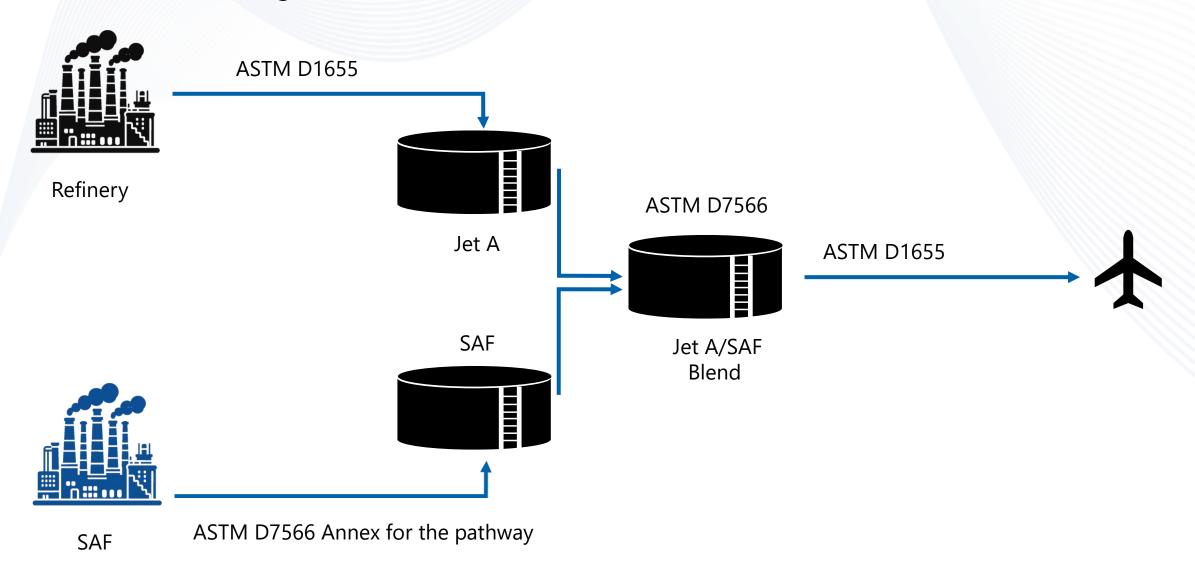
Estimated composition:

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
42%	18%	25%	12%	2.5%

Sample 7: HEFA

Estimated composition:

Iso-Paraffins	Normal-Paraffins	Naphthenes	1R Aromatics	2R aromatics
81%	16%	2.5%	0.4%	0.1%



ASTM ILS study next steps

- Implement the improvement we learned during the pilot study
- Joined study for aromatics in Jet A1, SAF, diesel and Avgas:
 - D1319 (FIA) precision update
 - Four different test methods for comparison against D1319
 - D8396 ILS will also report paraffins, olefins, etc.
- Based on ILS results after summer:
 - Precision for total aromatics and maybe more
 - Precision for Jet A1 and SAF, and maybe more
 - Revise D8396 around break of the year

SAF Journey

Why measure with process analysers?

Cost Savings

Optimising the blending of Kerosene streams to produce Jet A Optimising the wide variety of feedstocks for SAF

Reduced Downtime:

Minimise downtime by monitor for process upsets

Closer to specification:

Online measurement enable the refinery to get closer to specification than just taking lab measurements alone

Meet Compliance Online

For some refineries use online instruments to meet compliance online, with the benefit of not having to wait for lab result before moving the product onwards

Solutions

	Max/Min	D1655	D7566	Method
Sulphur	Max	3000ppm	3000ppm	D5453
Distillation				D86
10%	Max	205°C	205°C	
50%		report	report	
90%		report	report	
Final Boiling Point	Max	300°C	300°C	
Flash Point	Min	38°C	38°C	D56
Freezing Point	Max	-40°C	-40°C	D2386

NSure

Sulfur: D5453, D6667, ISO 20846

Flash Point

Icon Flash Point Analyser

D56, D92, D93, IP170

Atmospheric Micro- Distillation	Atmospheric Pressure Distillation
MicroDist	Icon Distillation Analyser
D86, D7345, IP 123	D86, IP 123, ISO 3405.

Freeze Point Icon Freeze Point Analyser

D2386, D5972 and D7153.

Freeze Point Powered by Icon

Best cooling performance

Patented cryo-cooler achieves exceptional results, without the need for an external chiller. Freeze Point cools down to -100°C within 10 minutes using normal plant-cooling water.

Excellent repeatability

Advanced detection algorithms and phase angle cryo-cooler control ensure better repeatability than standard test methods, giving unrivalled measurement certainty.

Meets your test requirements

Freeze Point's measurement results are compatible with all standard freeze-point test methods including ASTM D2386, D5972 and D7153.

MicroDist

Quickest Online Physical Property Distillation

While measuring samples up to 430°C, it can perform a complete distillation in under 10mins

Repeatability that better the D86

For most samples, the MicroDist is better than D86, for other it is equivalent

Match the Lab

Same physical analytical engine at the Lab Opti-PMD and provides excellent corelation to the OptiDist the benchmark measurement of atmospheric distillation using ASTM D86

Flash Point Powered by Icon

Safe Operation

Peltier-based sample cooler, ensuring that the incoming sample is safely cooled below the flash point temperature

An internal camera enables flash point observation without the need to open the explosion-proof box

Low Maintenance

Solvent wash cycle to wash away in waxy/gum build up. Electrode are sparked to remove deposits on them

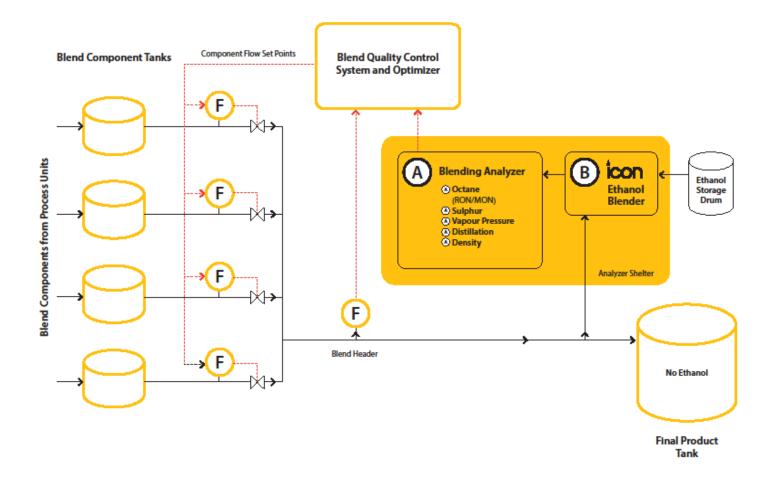
Meets your test requirements

The results are compatible with those produced by any standard flash point test methods, such as IP170, ASTM D92 and ASTM D93

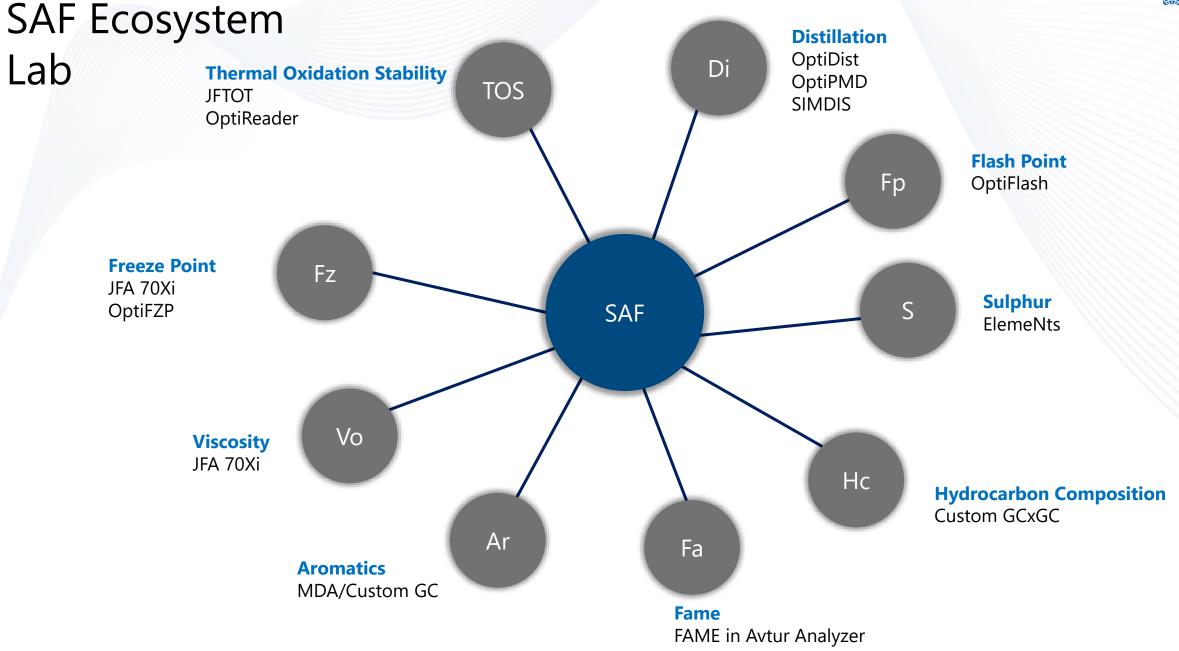
There has never been an accurate way to be absolutely certain that gasoline will be on spec after ethanol has been added.

There has always been uncertainty, with refineries naturally erring on the side of caution to make sure the product hits spec.

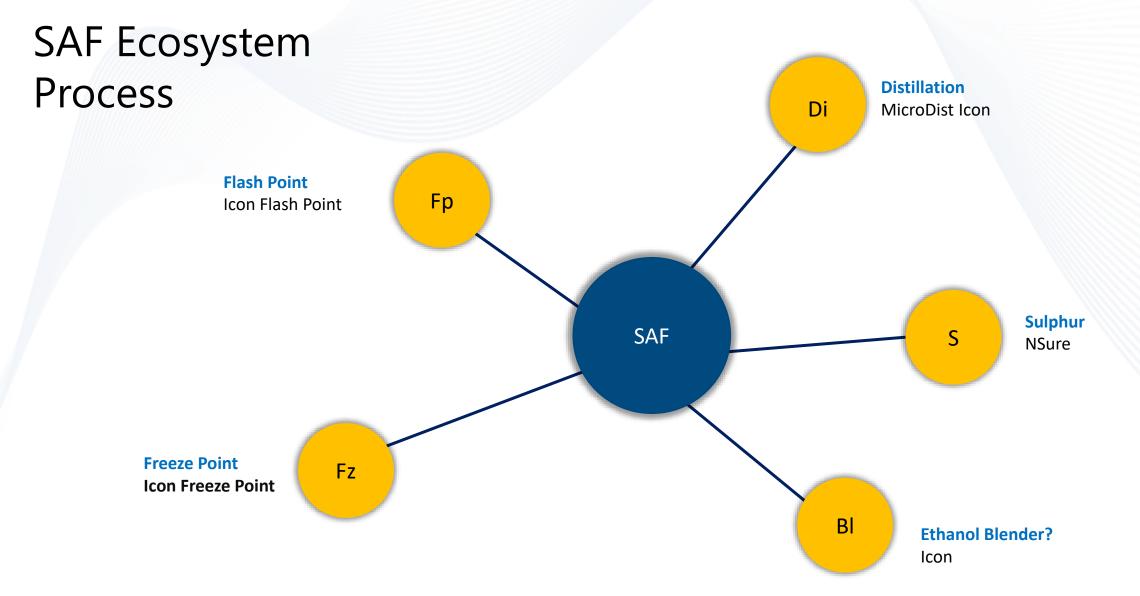
Until now.



Reduction in Give Away


The Ethanol Blend Optimiser, situated within the blending control system, takes a sample of the BOB and mixes it with the precise (better than± 0.05%) amount of ethanol at the required ratio to flow to the analysers.

This is no estimation.


You're testing the final blend – with ethanol.

TAG Closed Cup Flash Point	Small Scale Flash Point	Jet Fuel & Diesel	Atmospheric Pressure Distillation	Atmospheric Micro-Distillation	Total Sulfur
OptiFlash TAG	OptiFlash Small Scale	Phase Technology JFA & DFA-70Xi	Herzog OptiDist	ISL OptiPMD	ElemeNtS (Vertical) Ultra-Violet Fluorescence

Jet Fuel Thermal Oxidation	Ellipsometric Heater Tube Scanner	Automatic Freezing Point	Gasoline, Diesel & Jet Fuel FTIR	Aromatics	Fame
Alcor JFTOT IV	OptiReader	ISL OptiFZP	OptiFuel	Mid Distillates Analyze/Custom GC	FAME in Avtur Analyzer

Total Nitrogen & Sulfur

NSure

Flash Point

Icon Flash Point Analyser

Atmospheric Micro-Distillation

MicroDist

Atmospheric Pressure Distillation

Icon Distillation Analyser

Freeze Point

Icon Freeze Point Analyser

Thank you!

Visit paclp.com or contact your local PAC representative to learn more about SAF solutions.

