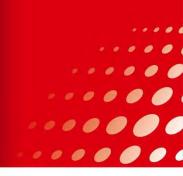
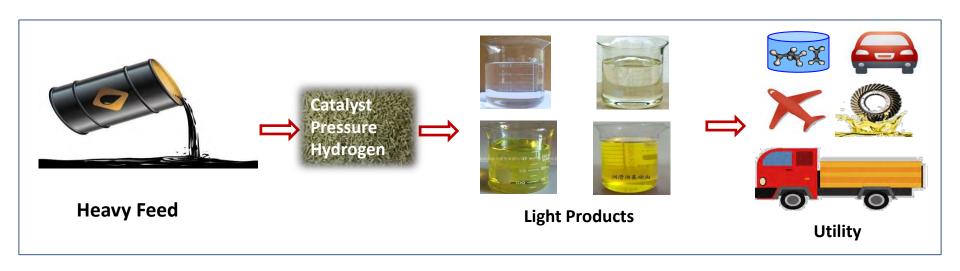


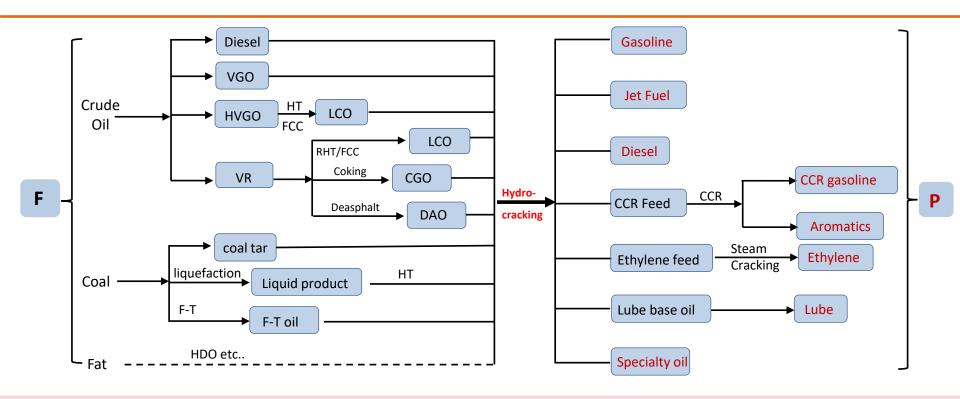
北京2022年冬奥会官方合作伙伴

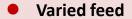

Sinopec FRIPP Hydrocracking Technology


1. Introduction

- 2. Hydrocracking Process of Sinopec FRIPP
- 3. Hydrocracking catalyst of Sinopec FRIPP
- 4. Conclusion

Contents 目录


Introduction



Hydrocracking is the most effective method for oil cleaning and lightening

Introduction

- Abundant products
- Flexible operation
- Better product quality

Introduction

Hydrocracking R&D process of FRIPP

6 national science and Technology Awards

1980s~1990s

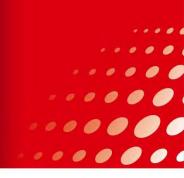
Supported the transformation of refineries from oil refining to chemical industry. Domestic market share >50%. In 2017, catalysts were exported

Developed 5 series of HC catalysts and diverse processes, able to provide "tailor-made" technology for the clients

223

Developed the 1st series of domestic commercialized HC catalysts and provided basic design data and catalyst for the 1st domestic HCU. Typical catalysts,3824, 3825 for HC and 3936 for pretreat

The 1st HC R&D team in China. 106 amorphous catalyst and H-06 catalyst with zeolite were developed.



Domestic Market share

- Success bid in the 5.6 MMt/a hydrocracking unit, which is the largest in single series scale all over the world which adopts SINOPEC FRIPP Hydrocracking Technology
- 40 units are designed with FRIPP technology
- 12 units are revamped with FRIPP technology

- 1. Introduction
- 2. Hydrocracking Process of Sinopec FRIPP
- 3. Hydrocracking catalyst of Sinopec FRIPP
- 4. Conclusion

Contents 目录

Hydrocracking Processes of Sinopec FRIPP

Classic HC processes

Middle Distillate selective processes

- FDC (single-stage double catalyst)
- FMD₁(single-stage in series)
- FMD₂(two-stage)
- FHC(flexible hydrocracking process)

Chemical material selective processes

- FMN(maximally producing heavy naphtha)
- FMC₁(single-stage in series)
- FMC₂(two-stage)
- Molecular-level controlled hydrocarbon conversion
- Jet fuel and chemical material enhanced production process with VGO
- Jet fuel and chemical material enhanced production process with SRGO

Hydrocracking Processes of Sinopec FRIPP

Energy-saving hydrocracking process

SHEER(Sinopec Hydrocracking Efficient **Energy Reduction**)

Wet start-up technology of Oxidation state hydrocracking catalyst

Characteristic **HC** processes

Combined HC Processes

FHC-WSI(HC + iso-dewaxing)

FHC-FHF(HC + HT sectional feeding)

FHC-FHT(HC + HT reverse series)

FHC-HDS(HC + VGO HDS)

MHUG-HAD(hydro-upgrading + Jet Fuel hydro-finishing

under moderate pressure)

Hydrocracking/hydro-upgrading processes at moderate Pressure

MPHC (Moderate pressure HC)

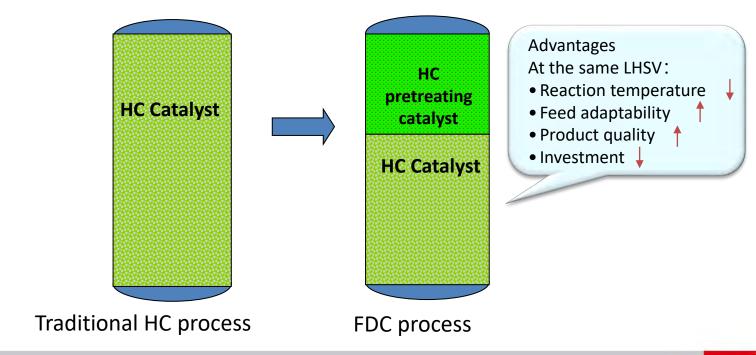
MHC(Mild Hydrocracking)

FDHC(HC of diesel under moderate pressure)

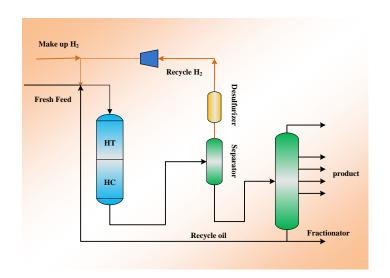
MHUG(Hydro-upgrading under moderate pressure)

MCI(Maximally increasing cetane number)

FD2G(LCO to gasoline conversion)


FHI(hydro-isomerization to improve cold flow

property of diesel)


Hydrocracking Processes of Sinopec FRIPP

1. FDC process(single-stage double catalyst)

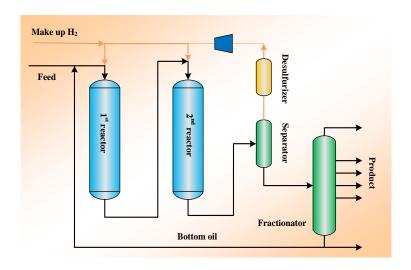
1. FDC process (single-stage double catalyst)

- 1 FDC process was commercialized in 2005
- 2 It features high middle distillate yield, low hydrogen consumption, good product quality and low energy consumption
- Applicable catalysts: FC-14, FC-28 and the latest generation of FC-34 and FC-38
- Industrial unit result: Middle distillate (Jet fuel +diesel) yield 78.85%, Comprehensive energy consumption ~ 30Kg standard oil /t feed

1. FDC process (single-stage double catalyst)—commercialization cases

No.	Site	Unit type	Unit scale, MMt/a	
1	Jiangsu	НРНС	1.5	
2	Hainan	НРНС	1.2	
3	Shandong	НРНС	0.56	
4	Liaoning	НРНС	1.3	
5	Liaoning	НРНС	1.0	
6	Liaoning	НРНС	1.5	

a: high pressure hydrocracking(P>10MPa)


1. FDC process (single-stage double catalyst)

Industrial unit operation result of FDC process

Operation condition	2020		Result	12.000			
process		single-stage in series(full recycle)					
Pressure, MPa		15.2					
Result	VGO	Light Naphtha	Heavy Naphtha	Jet Fuel	Diesel		
Yield, %	100	3.86	13.77	36.73	42.12		
Density(20°C), g/cm ³	0.9140	<0.65	0.7228	0.7990	0.8441		
Distillation range, °C	331~524	30~79	76~142	145~261	280~362		
Sulfur, mg/kg	19700		<0.5	1.9	1.0		
Nitrogen, mg/kg	1322		<0.5				
Smoke point,mm				24			
Solidification point, °C					-12		
Cetane number					59.5		

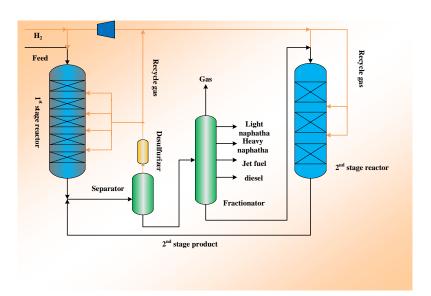
2. FMD₁ **process**(single-stage in series)

- A hydrocracking technology employing middle-distillate selective catalyst and once through or full recycle operation mode
- With UCO full recycle operation mode, middle distillate yield is ~75%, among which jet fuel yield is ~45%
- It features good feed adaptability, flexible operation scheme, long operation period
- Applicable catalysts: FC-26, FC-50 and the latest generation of FC-60 and FC-80

2. FMD₁ **process**(single-stage in series)—commercialization cases

No.	Site	Unit type	Unit scale, MMt/a
1	Jiangsu	НРНС	1.0
2	Guangdong	НРНС	1.1
3	Zhejiang	НРНС	1.2
4	Guangdong	НРНС	1.2
5	Jiangxi	НРНС	2.4
6	Hebei	НРНС	1.5

a: high pressure hydrocracking(P>10MPa)


2. FMD₁ **process**(single-stage in series)

Industrial unit operation result of FDM₁ process

Item	Result Result						
Process		single-stage in series(full recycle)					
Pressure, MPa			13.4				
Industrial application result	VGO	Light Naphtha	Heavy Naphtha	Jet Fuel	Diesel		
Yield, %	100	11.34	13.74	29.30	38.53		
Density(20°C), g/cm ³	0.9106	0.6689	0.7438	0.7891	0.8187		
Distillation range, °C	305~572	28~106	98~143	150~226	210~369		
S, mg/kg	17000	<0.5	<0.5	<1	<1		
N, mg/kg	1260	0.2	<0.5	<1	<1		
N+A, %			52+6				
Smoke point,mm				29.0			
Cetane index					69.0		

3. FMD₂ process(two stages)

- A new HC process especially developed to meet the customers' need for maximizing middle distillate yield and to respond to the scaling up of HC units
- The first stage deals with fresh feed and the second stage deals with the UCO
- Pilot test: middle distillate yield can be as high as 79.35m% when Middle East VGO is processed

3. FMD₂ process(two stages)

Pilot test result of FMD₂ process

Item / A / A / A / A / A / A / A / A / A /	a. 6.0.			12.00	1 A 1 A 1 A		
Process		Two stages (full recycle)					
Pressure, MPa			13.7				
Pilot test result	VGO	Light Naphtha	Heavy Naphtha	Jet Fuel	Diesel		
Yield, %	100	5.96	11.32	28.75	50.60		
Density(20°C), g/cm ³	0.9121	0.6489	0.7214	0.7774	0.8387		
Distillation range, °C	335~532	32~82	85~130	139~228	243~358		
Sulfur, mg/kg	12800	<0.5	<0.5	<1.0	<1.0		
Nitrogen, mg/kg	1328	<0.5	<0.5	<1.0	<1.0		
Aromatic potential, %			45.1				
Smoke point, mm				30			
Cetane number					58.2		

4. FHC(flexible hydrocracking process)

UCO full recycle mode

Middle distillate scheme:

middle distillate (jet fuel + diesel)yield: 60%~65%

Chemical material scheme:

heavy naphtha yield: 30%~ 40%

total yield of chemical material: 60%~ 65%

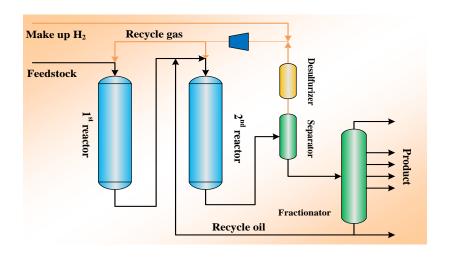
Product scheme can be flexibly adjusted by changing catalysts, processing mode and product cutting point

Applicable catalysts: FC-12, FC-32 and the latest generation of FC-76 and FC-86

4. FHC(flexible hydrocracking process)—commercialization cases

No.	Site	Unit type	Unit scale, MMt/a
1	Tianjin	HPHC ^a	1.2
2	Tianjin	НРНС	1.8
3	Shanghai	НРНС	1.4
4	Shanghai	НРНС	1.5
5	Fuzhou	НРНС	2.1
6	Shandong	НРНС	2.0
7	Liaoning	НРНС	1.6
8	Xinjiang	НРНС	1.0
9	Jilin	MPHC ^b	0.9
10	Guangdong	НРНС	2.4
11	Hubei	НРНС	1.8
12	Taizhou	НРНС	1.5
13	Shandong	НРНС	1.5

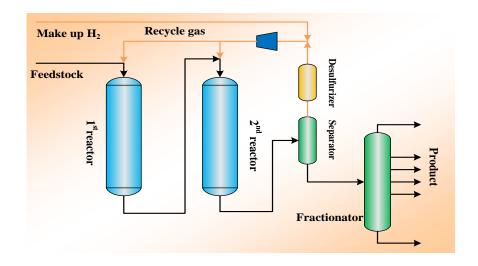
a: high pressure hydrocracking(P>10MPa) b: moderate pressure hydrocracking(P<10MPa)



4. FHC(flexible hydrocracking process)

Item	Jana St.	ALL K	Resi	ult		2000	
Process		single-stage in series/ once through					
Pressure/MPa			14.	2			
Industrial results	VGO	Light Naphtha	Heavy Naphtha	Jet Fuel	Diesel	UCO	
Yield, %	100	11.53	14.42	30.76	15.38	26.91	
Density(20°C)/g·cm ⁻³	0.9076	0.6812	0.7504	0.8040	0.8204	0.8325	
Distillation range/°C	264~491	30~114	89~158	152~291	186~353	251~479	
Sulfur, mg/kg	19600	<0.5	<0.5	<2	<2	<5	
Nitrogen, mg/kg	5	<0.5	<0.5	<1	<1	<1	
Smoke point, mm				25.0			
Cetane index					66.8		
BMCI						10.7	

1. FMN (maximally producing heavy naphtha)


- Employing proprietary highly active HC catalysts, single-stage in series mode and full recycle of distillate with boiling point beyond 177°C to maximally produce CCR feed
- Applicable catalysts:FC-24, FC-46 and the latest generation of FC-52 and FC-82
- 3 Pilot test result: CCR feed yield can be ~70%

1. FMN process industrial result

Item Total Control of the Item		Result				
Process	Two-stage(full recycle)					
Pressure/MPa	13.0					
Industrial result	Feed	Light naphtha	Heavy naphtha			
Yield, %	100	20.75	71.85			
Density(20°C)/g·cm ⁻³	0.8906	0.6474	0.7400			
Distillation/°C	153~545	31~77	72~177			
Sulfur, mg/kg	13200	<0.5	<0.5			
Nitrogen, mg/kg	1253	<0.3	<0.3			
Paraffin, %		91.2				
N+A, %			41+9			

2. FMC₁ process (single-stage in series)

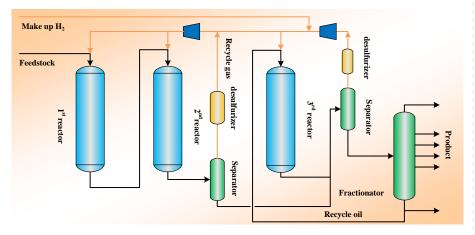
1 It produce both CCR feed and ethylene feed with high quality

2 Industrial application result: chemical material (L/H naphtha +UCO) yield can be ~85%

2. FMC₁ process (single-stage in series)—commercialization cases

No.	Site	Unit type	Unit scale, MMt/a
1	Jiangsu	НРНС	2.0
2	Zhejiang	НРНС	1.5
3	Liaoning	НРНС	1.3
4	Liaoning	НРНС	1.1

a: high pressure hydrocracking(P>10MPa)

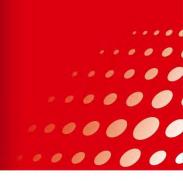


2. FMC₁ process (single-stage in series)—industrial application result

Item /			HC unit	10000	Jan 20			
Process		Single-stage in series/once through						
Pressure/MPa			14.2					
Industrial results	Feed	Light naphtha	Heavy naphtha	Jet Fuel	UCO			
Yield, %	100	9.15	46.52	10.35	28.26			
Density(20°C)/g·cm ⁻³	0.8878	0.6543	0.7441	0.7923	0.8051			
Distillation/°C	237~496	33~65	83~174	159~242	210~428			
Sulfur, mg/kg	2600	<0.5	<0.5	<0.5	7.3			
Nitrogen, mg/kg	1705	<0.5	<0.5	<0.5	<0.5			
Aromatic potential, %			55.3					
Smoke point, mm				27				
BMCI					11.2			

3. FMC₂ process (two stages)

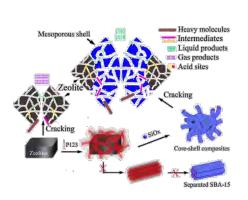
- Heavy and inferior hydrocracking feedstock can be totally transformed into high-quality chemical light oil with FMC₂ process
- The process is similar to FMD2, the difference is that second stage of FMC2 deals with 177 °C ~ 350 °C distillates instead of tail oil from the first stage
- Pilot test result: chemical material (L/H naphtha + UCO) yield can reach ~95%


3. FMC₂ process (two stages)

Item		Res	ult A A A					
Process		Two stage/full recycle						
Pressure/MPa		12.4						
Pilot test result	Feed	Feed Light naphtha Heavy Naphtha						
Yield, %	100	10.86	50.37	32.46				
Density(20°C)/g·cm ⁻³	0.9164	0.6482	0.7516	0.8385				
Distillation/°C	328~531	33~81	74~174	379~530				
Sulfur, mg/kg	16000	<0.5	<0.5	<5				
Nitrogen, mg/kg	1475	<0.5	<0.5	<2				
Paraffin, %		>95						
Aromatic potential, %			61.3					
BMCI				11.5				

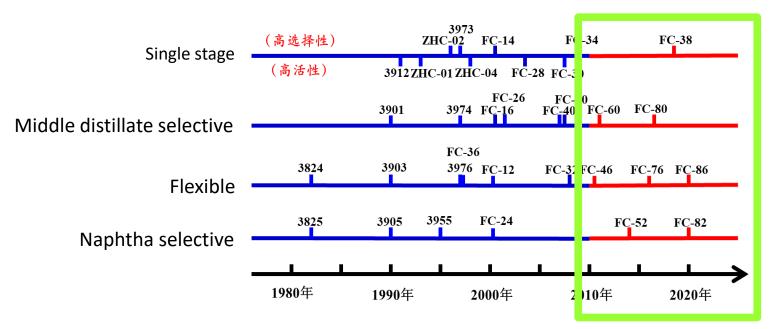
- 1. Introduction
- 2. Hydrocracking Process of Sinopec FRIPP
- 3. Hydrocracking catalyst of Sinopec FRIPP
- 4. Conclusion

Contents 目录

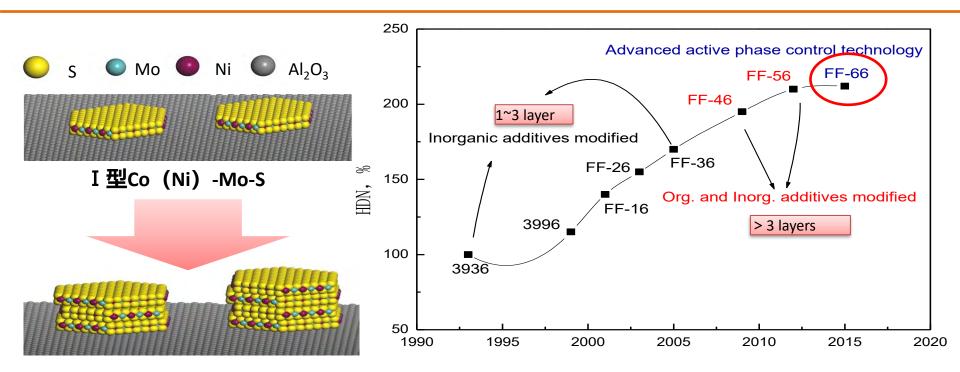


Based on the deep understanding of molecule behavior during hydrocracking process, FRIPP has developed a series of hydrocracking catalysts with high conversion efficiency and high selectivity which are commercialized for more than 220 times.

We have a full range of hydrocracking technologies and catalysts and are able to provide "tailor-made" catalysts for the clients.

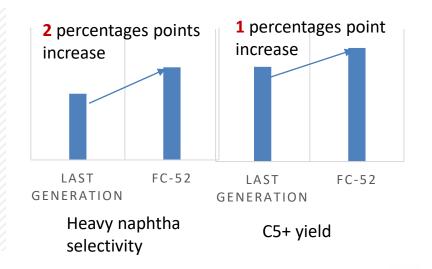


Hydrocracking catalysts developed by FRIPP include:


	Naphtha selective catalysts	Flexible catalysts	P	Middle dist	
	Catalysts especially suitable for single-stage process	Guard catalysts and pretreating catalysts		Inferior die catalysts	esel upgrading
吊	Cold flow property improving catalysts	Lube oil hydrotreating catalysts			

- ☐ The catalysts are tested by AVANTIUM and are identified as "first class product"
- We are Invited to form a strategic alliance with Albemarle Co. to jointly explore the international market

Hydrocracking pretreating Catalysts of Sinopec FRIPP


Ⅱ型Co (Ni) -Mo-S

Naphtha selective catalysts

- Suitable for single stage in series and two stages processes
- 2 Good at maximizing naphtha and UCO
- Decreasing BMCI and final boiling point of UCO to produce better ethylene feed

Flexible hydrocracking catalysts

- Suitable for single stage in series and two stages processes
- 2 Flexibly producing naphtha, middle distillates and UCO
- 3 The UCO can be ethylene feed with nice quality

Compared to last generation FC-76 provides

- √ 0.5-1.1 percentage point higher C5+ yield
- **√** 0.09-0.18 percentage point lower H₂ consumption
- √ 1.8-2.7 percentage point higher Heavy naphtha selectivity
- √ 1.8-2.1 percentage point lower UCO BMCI

Middle distillate selective catalyst

FC-16 features:

- √ High middle distillate selectivity
- ✓UCO with low pour point as the feed of lube base oil

Characteristics of FC-80:

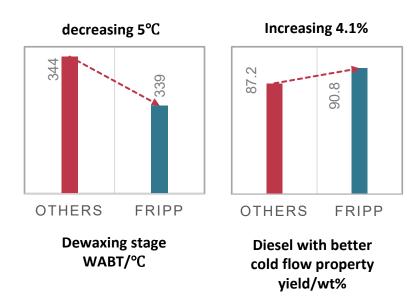
- ✓ Capable of getting tail oil as ideal feed for lube base oil with high viscosity index;
- ✓ Successful application in Russia

Catalysts especially suitable for single-stage process

FC-14 provides:

- √ High middle distillate selectivity
- ✓ Better cold flow property of middle distillate and UCO
- √ More isomerized products

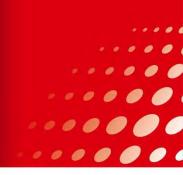
Hydrocracking catalyst of FRIPP has been exported to Europe



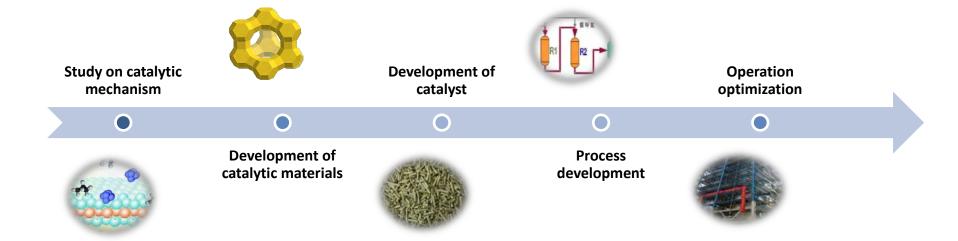
Products	Light naphtha	Heavy naphtha	Jet fuel	Diesel	uco
Yield, %	3.12	14.59	11.26	41.57	35.38
Density/g·cm ⁻³	0.6690	0.742	0.801	0.835	0.841
Mercaptan sulfur/μg⋅g-1			2		
Copper corrosion			Pass		
Solidification point/°C					37
Smoke point/mm			>25		
Cetane number				55	
S/μg·g ⁻¹		<0.5			3
N/μg·g ⁻¹					0.8
Viscosity index					141

All the parameters of key indexes meet the requirements, especially the UCO viscosity index is stable above 140, which has been fully approved by the Client

Diesel hydro-dewaxing catalyst of FRIPP has been exported to Kazakhstan refinery



All the parameters of key indexes are better than the catalyst installed last period, and catalyst from FRIPP has been fully approved by the Client



- 1. Introduction
- 2. Hydrocracking Process of Sinopec FRIPP
- 3. Hydrocracking catalyst of Sinopec FRIPP
- 4. Conclusion

Contents 目录

Conclusion

- Sinopec FRIPP developed a series of hydrocracking technologies and laid solid foundation for producing clean oil.
- FRIPP hydrocracking technologies have been successfully applied in many industrial enterprises.
- Clients can choose appropriate technologies according to their needs.

Thanks

www.sinopec.com

For more information, contact: **Zhao Ran zhaoran@sinopec.com**

