

Introduction to SINOPEC SRIPT 's Benzene Derivatives Production Technologies

SINOPEC Shanghai Research Institute of Petrochemical Technology

SINOPEC GROUP

- 1. Transakylation Technologies
- 2. Ethylbenzene Technologies

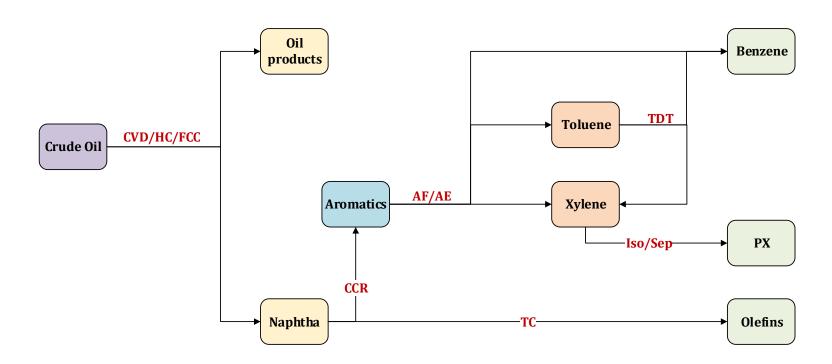
Introduction to SINOPEC SRIPT 's Transalkylation Technologies

SINOPEC Shanghai Research Institute of Petrochemical Technology

SINOPEC GROUP

1. Background

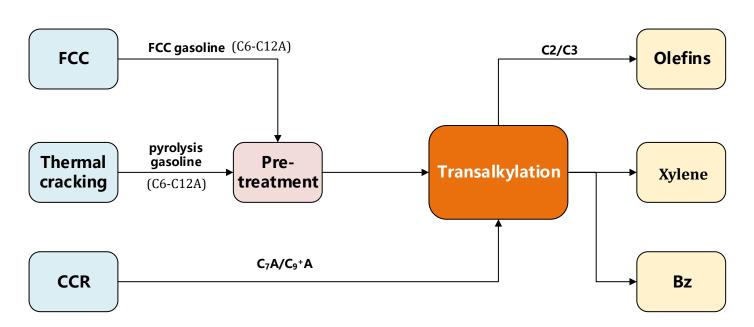
- 2. Aromatic Transalkylation Technology of SRIPT
- 3. Catalyst Optimization Cases
- 4. Summary



Wide Use of Paraxylene Synthetic Para-xylene **Fiber** (PX) **Engineering Plastic Purified Terephthalic Acid Packaging** (PTA) Material High Performance **Fiber**

From Refinery to Chemicals

Transformation of refining and chemical industry

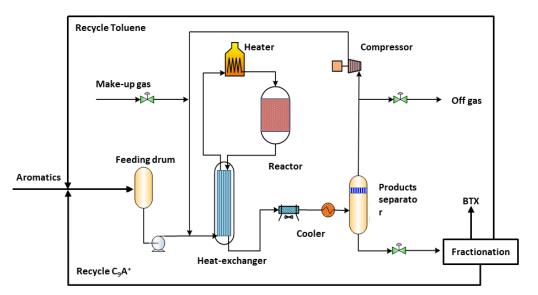


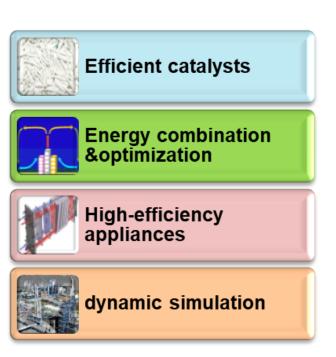
Aromatic Transalkylation Technology of SRIPT

What are we doing?

integration of refining & chemical industry

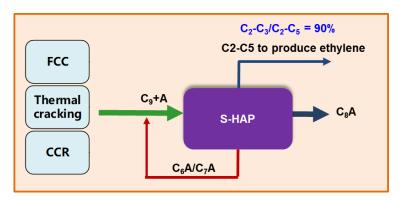
What process technologies do we have?


Process Portfolio


PX process	Process description	Similar process	Remarks	start-up Year	Catalysts
S-TDT [™]	Toluene + C_9 ⁺ A \rightarrow C_8 A+benzene Toluene \rightarrow C_8 A+benzene	TATORYTrans-PlusTrans-PlusMTDP	Largest capacity 3500 KMTA. 15 UNITS	1997	HAT TM /HLD TM series
S-HAP TM	heavy aromatics $C_9^+A \rightarrow C_8A$ +light gas(C_2/C_3)	• /	Largest capacity 1000 KMTA	2016	HAP [™] series
MTX^{TM}	Benzene+ $CH_3OH \rightarrow C_8A(rich PX)$ Toluene + $CH_3OH \rightarrow C_8A(rich PX)$	• EMTAM • EMTA	Largest capacity 200 KMTA	2012	MTX [™] series
SSTDP™	Toluene→ C ₈ A(rich PX)+benzene	PX-PlusSTDPPX-Max	Largest capacity 200 KMTA	2007	SD [™] series

Aromatic Transalkylation Process of SRIPT (S-TDT)

S-TDT process

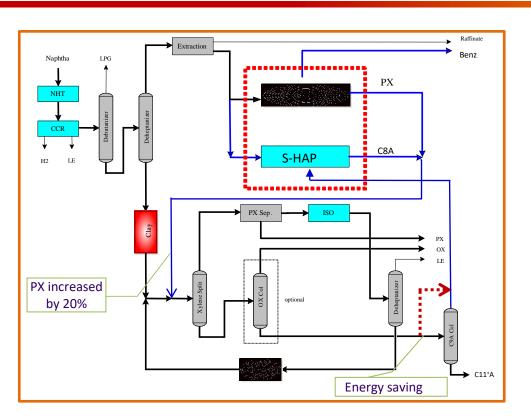

➤ The largest design capacity is 3500KMTA

Aromatic Transalkylation Process of SRIPT(S-HAP)

S-HAP process

- $igspace C_9^+ A$ Heavy Aromatics $\to X$ ylene + ethylene
- ◆ Maximize the xylene production
- ◆ Convert inferior gasoline to more valued C8A

Feed	Product	Content (wt%)
	C ₁	0.1
C + A	C_2 - C_4	16
C ₉ ⁺A	C ₈ A	83
	C ₁₀ +A	0.9

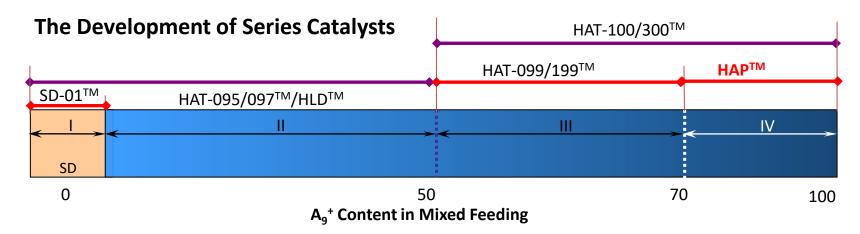

Process advantages

- > C₉⁺A as the only feedstock
- **▶** Produce C₈A and light ends
- > Flexible products structure
- **→** Low H₂ consumption
- > Flexible for existing unit

Sinopec's Technology of Processes Integration

Integration of S-TDT™ & S-HAP™ process

- ✓ Increased Heavy Aromatics utilization
- ✓ Enhanced PX concentration in product and the productivity of the units
- ✓ Energy saving, Decrease the energy consumption of PX recovery unit
- ✓ Flexibility of product distribution adjustment


What catalysts do we have?

Catalyst Portfolio

Catalyst Type	Specialty	Applicable Process	Features	Remarks
HAT™/ HLD™	$C_7A + C_9^{\dagger}A \rightarrow C_8A + Bz$ $C_7A \rightarrow C_8A + Bz$	 Tatoray Transplus Xylene-Plus TDP-3 Sinopec Technology 	·High conversion ·Low ring loss ·Long cycle	 Feed flexibility High xyl yield & Bz purity (>99.93%) Commercialized ~90 times Large scale Unit (2*3500KTA)
НАРТМ	C_9 ⁺ A $\rightarrow C_8$ A+light ends(C_2 / C_3)	1. Tatoray/Transplus 2. Xylene-Plus 3. TDP-3 4. Sinopec Technology	 High conversion High xylene yield Deal with C₉⁺A containing naphthalene or NA or olefins 	 Feed flexibility C9*A conversion >55% Commercial scale 1000 KTA
BAT™	$Bz + C_9^{+}A {\longrightarrow} C_8A {+} C_7A$	1.Tatoray/Transplus 2. Xylene-Plus 3. TDP-3 4. Sinopec Technology	· High Conv. and Sele. · Low ethylbenzene/C ₈ A	·Total conversion >55% · EB/C ₈ A≤3%
SD TM	C ₇ A→ C ₈ A(rich PX)+Bz	1. MTPX 2. TDP-3 3. PX-Plus 4. Sinopec	High toluene conversion High PX selectivity High enzene purity	· PX/X >90% · Toluene conversion >30%

Technology

Aromatic Transalkylation Catalysts of SRIPT

- High feed flexibility and can handle 100% toluene and 100% C₉⁺
- Atom economics: Most C₁₀A and part of C₁₁A can be used for C₈A production
- high conversion efficiency and high selectivity
- lower Aromatic loss and H₂ consumption, High benzene purity
- Higher capacity for Inferior heavy aromatics: aromatics containing naphthene, naphthalenes and olefins
- Whole fraction heavy aromatics: simplify the separation process

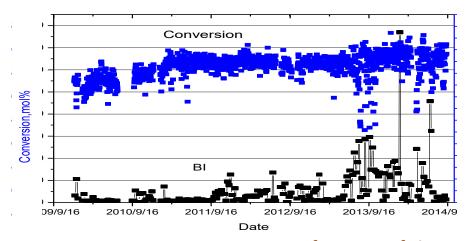
Catalyst Comparison

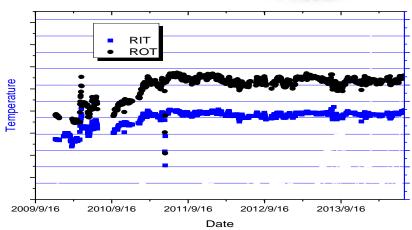
Licensor	Ref 1	Ref 2	Ref 3	SINOPEC
Catalyst series	A	В	С	HAT™/HLD ™
Metal loading	Noble metal	Noble metal	Noble metal	Non-noble metal
Pre-sulfurization	Yes	Yes	Yes	No
Feedstock	Tol, C ₉ A, C ₁₀ A			
Inlet Pressure, MPa	2.5~3	2.5~3	2~2.5	2.5~3
RIT, °C	360~480	350~480	380~480	350~460
H ₂ /HC, mol/mol	3	3	2~3	2~3
WHSV, h ⁻¹	2-3.5	2-3.5	2-3.5	2-4

Commercial Application of HATTM /HLDTM Catalyst

large-scale Units application (capacity>1000KTA)

Client	PX Capacity (KTA)	Process Licensor	Catalyst Supplier	Start up year
1	1000	other	SINOPEC	2009
2	1000	SINOPEC	SINOPEC	2010
3	1600	other	SINOPEC	2015
4	2250x2	SINOPEC	SINOPEC	2019
5	1000	SINOPEC	SINOPEC	2021
6	2000x2	SINOPEC	SINOPEC	2021
7	2200	SINOPEC	SINOPEC	2022
8	2000	SINOPEC	SINOPEC	2022
9	1600	SINOPEC	SINOPEC	2022
10	1000	SINOPEC	SINOPEC	2023




Commercial Application

Sinopec Catalyst application Case 1

•The third batch of Sinopec catalyst is under stable operation

Performance of Sinopec catalyst in company A

Commercial Application

Sinopec Catalyst application Case 2

- Sinopec catalyst obtained improved performance
- •Preparing for the supply of the third batch of Sinopec catalyst

Catalyst	Reference Catalyst	Sinopec Catalyst
C ₁₀ A Conv., wt%	ST	ST+20%
Xyl yield, wt%	ST	ST+2%
EB/C ₈ A	ST	50%ST
benzene purity, wt%	99.90	99.95

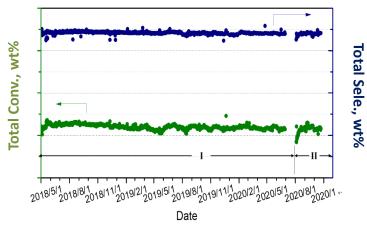
Commercial Application

Sinopec Catalyst application Case 3

- •H₂/HC=~2.0 mol/mol, far lower than normal
- •It has kept the stable running with high conversion till now

Catalyst	Reference Catalyst	HAT-099P	
Conversion, wt%	Rapid drop 3-4%	Stable	
Selectivity, wt%	Kapiu urop 3-4%	Stable	
Temp rise rate, °C	Frequent rise by 60°C in 2 months	~1°C/month	

Catalyst Optimization

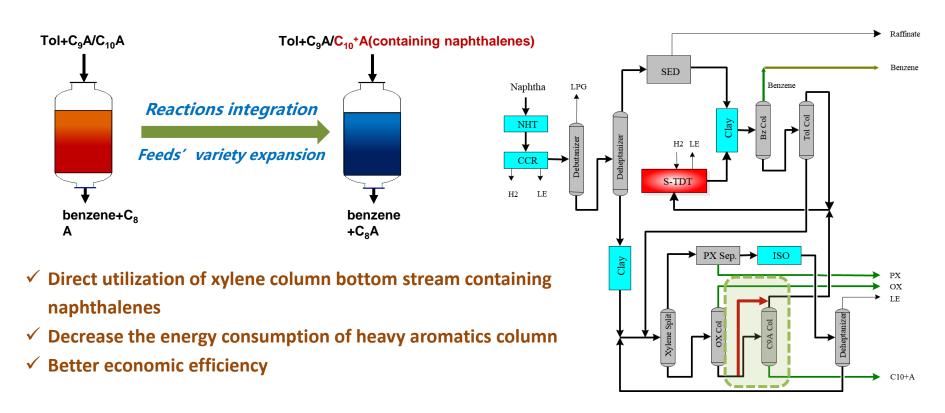

A. Direct Capacity Expansion (Without Equipment Revamp)

Performance upgrading

	Typical Cat	Upgrading Cat
Licensor	Sinopec	Sinopec
WHSV, h ⁻¹	ST	Up to 160%*ST
Make-up F, KNM ³ /h	ST	45%*ST
H ₂ /HC, mol/mol	ST	73%*ST
Conv., wt%	ST	ST
Sele., wt%	ST	ST+1%
C ₈ A Sele., wt%	ST	ST+3%

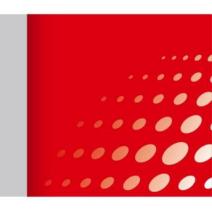
- **◆** Capacity Expansion to 130% directly
- Less investment and fast return
- ♦ Higher selectivity, lower H₂ consumption

Long period operation



B. Energy Saving of Heavy Aromatics Column

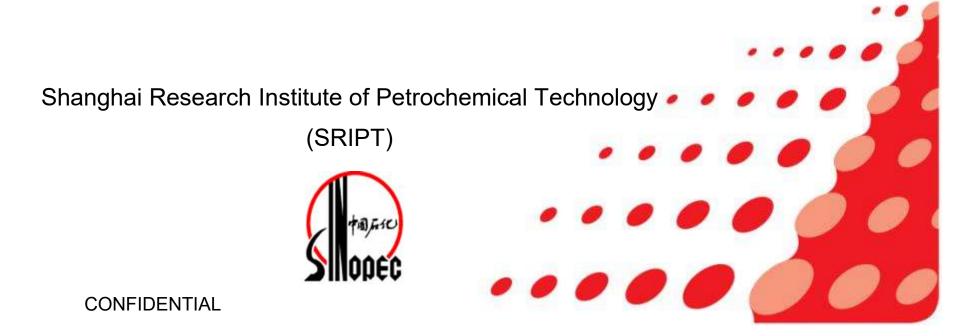
Summary



Summary

- > Series catalysts meet the different operation conditions and various requirement of product structure.
- Strong adaptability to feedstocks from pure Tol to 100%C₉+A containing Non-aromatic, olefin, naphthalenes.
- ➤ A catalyst supplier integrating research, production and process design, able to provide professional, tailor-made solutions to customers.
- > All the technical service for free.
- > Rapid catalyst supply and response.

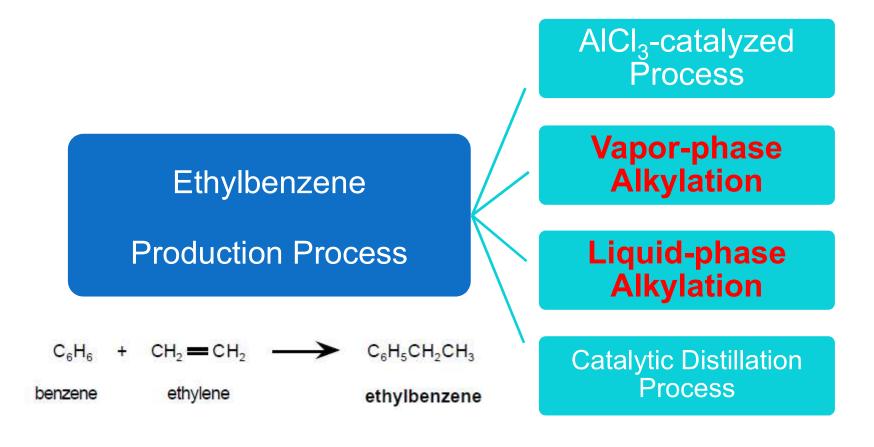
THANK YOU


Yidan Guo (Cathy)
guoyid.sshy@Sinopec.com
+86-21-68461668

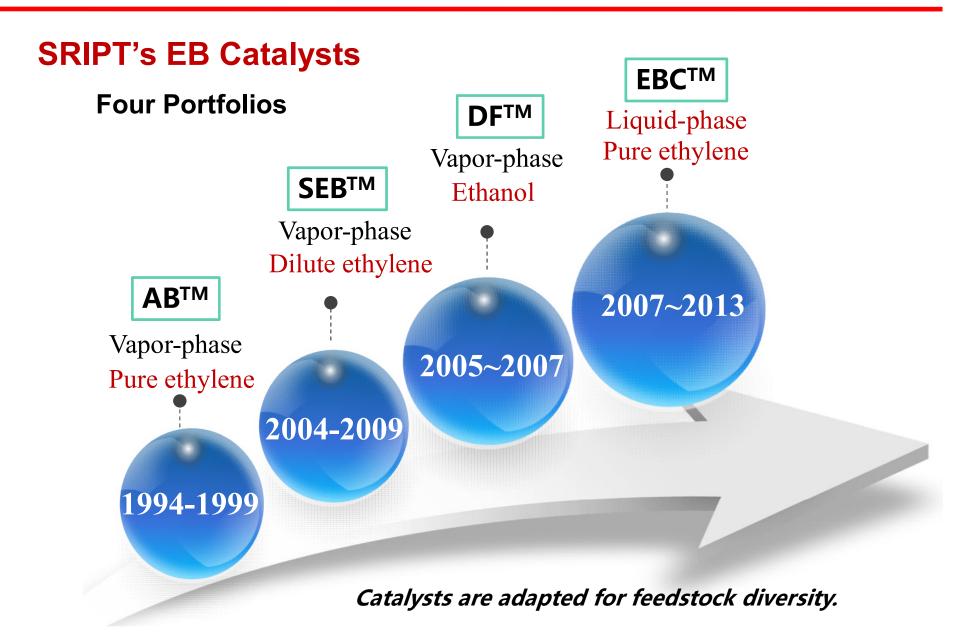
SRIPT's Catalysts for Ethyl-Benzene Production

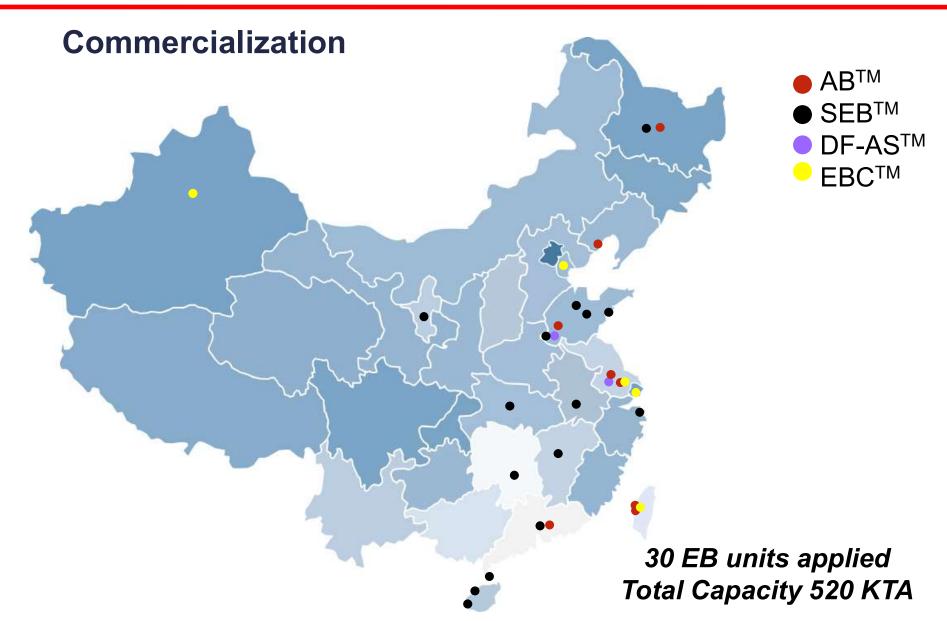
Development and Industrial Application

- 1 Introduction
- Vapor-Phase EB Catalyst (Pure Ethylene)
- Vapor-Phase EB Catalyst (Dilute Ethylene)
- Liquid-Phase EB Catalyst



- Ethylbenzene (EB) is one of the most important chemical intermediates and mainly used in the production of styrene.
- Styrene monomer (SM), EB's dehydrogenation product, is used in polymer production of polystyrene, ABS, SAN resins, etc.
- Global overall capacity is about 40 MTA and has an increase rate at 3% annually.
- The growth of EB is rapid in Asia, particularly in China.




Commercial Processes for EB Production

Vapor-Phase EB Catalyst (Pure Ethylene)

Vapor-Phase EB Catalyst (Dilute Ethylene)

4 Liquid-Phase EB Catalyst

2. Vapor-Phase EB Catalyst (Pure Ethylene)

Vapor-phase alkylation catalysts adapting pure ethylene

■Catalyst brand:

□AB-97TM, AB-12TM

■Applicable tech. sources

□Badger, Sinopec

■Catalyst features:

ltems	AB -97™	AB-12 TM
Inlet temperature (°C)	385~395	370~380
B/E ratio(mol/mol)	6.0~7.0	5.5~6.0
Ethylene conversion (%)	≥99.6	≥99.8
Cycle length (month)	≥12	≥24
Service lifetime (month)	≥36	≥48

2. Vapor-Phase EB Catalyst (Pure Ethylene)

Vapor-phase trans-alkylation catalysts

■Catalyst brand:

□AB-97-TTM, AB-12-TTM

■Applicable tech. sources

□Badger, Sinopec

■Catalyst features:

Items	AB-97-T TM	AB-12-T TM
Inlet temperature (°C)	420~450	410~440
DEB conversion (%)	≥60	≥65
EB selectivity (%)	≥99	≥99
Cycle length (month)	≥18	≥24
Service lifetime (month)	≥36	≥48

2. Vapor-Phase EB Catalyst (Pure Ethylene)

8 EB units applied

No.	Location	Capacity KTA	Tech. Source	Unit Startup Year	Catalyst Appl. Year
1	Liaoning	60	Badger	1996	1999
2	Heilongjiang	60	Badger	1997	2002
3	Guangdong	80	Badger	1997	2002
4	Jiangsu	15	Sinopec	2003	
5	Jiangsu	160	Sinopec	2007	
6	Shandong	215	Sinopec	2015	
7	Taiwan	350	Badger	2002	2015
8	Taiwan	250	Badger	1998	2016
		Total: 1,190			

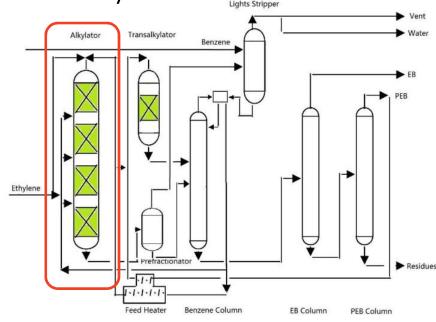
Application Cases

Case 1

Unit Conditions

• Tech. Source: Badger (3rd Generation process)

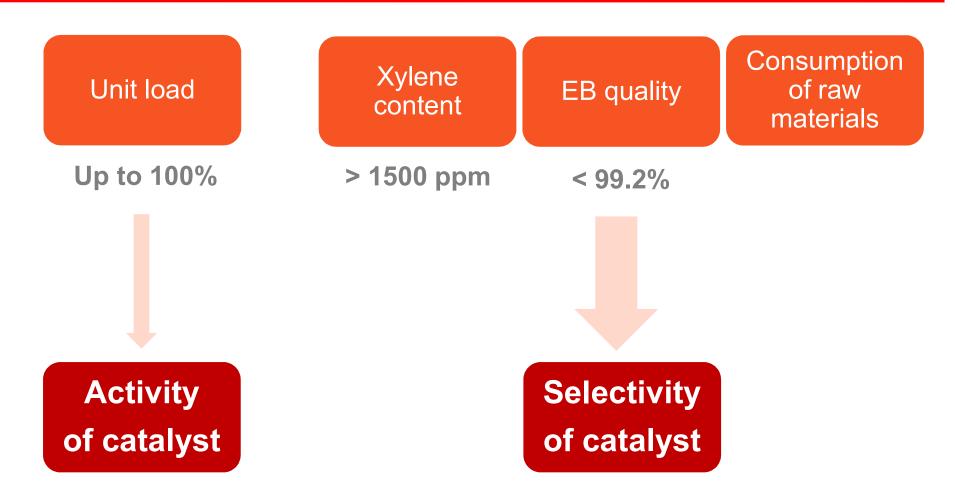
Tech. Type: Vapor-Phase/Polymer Grade Ethylene


• Capacity: 350 KTA EB

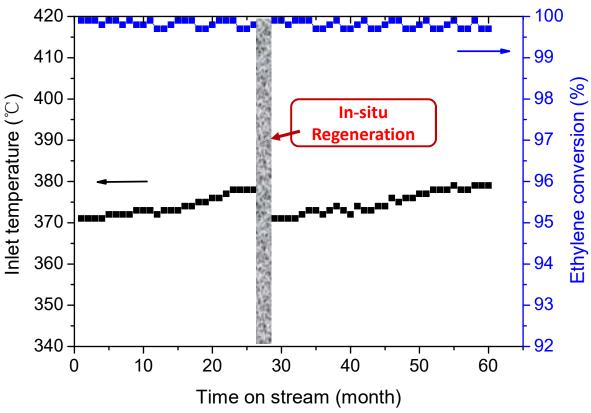
Reactor diameter: φ2200mm

• Startup time: 2002.02

Application of AB-12


• Since 2015.10

Problems of Alkylation


(before the year 2015)

Catalyst Replacement by AB-12™

In Oct. 2015, the unit was re-started with AB-12[™] loaded in the alkylator.

- Inlet temperature is stable
- Conversion of ethylene is higher than 99.6%
- The catalytic properties can be maintained after regeneration
- Unit ran steady for 60 months efficiently.

Solution for the Problems

- Catalyst replacement
- Assist with optimizing the operation conditions
- Suggestions on improving catalyst regeneration process

Unit load

Xylene content

EB quality

Consumption of raw materials

Ref. Cat. Up to 100% > 1500 ppm < 99.2%

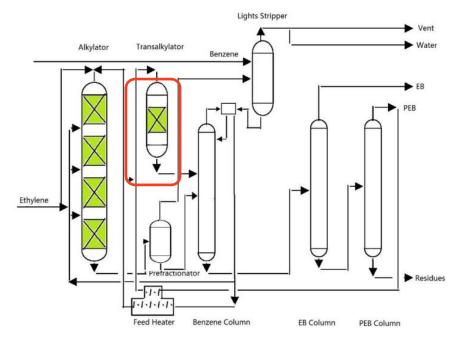
AB-12™ Up to 110% < 1200 ppm > 99.6%

Bz
C₂ ↓ 2.2 kg
C₂ ↓ 2.0 kg

Economic Benefits

Items	Improvement	Estimated Additional Retained Profit* (M USD)	
Benzene consumption, kg/tEB	↓ 2.2	0.66	
Ethylene consumption, kg/tEB	↓ 2.0	0.70	
Xylene/EB, ppm	↓ 300~500	1.00	
Product EB purity, %	个 0.4		
EB output, %	↑ 10	6.11	
Total	-	8.47	

^{*}The benefits from the energy saving by AB-12 and AB-12-T are even excluded here.


More than 8 Million USD/a additional retained profits for the 350 KTA EB unit!

Application Cases

Case 2

- Unit Conditions
 - Transalkylator
 - Reactor diameter: φ2700mm
 - Startup time: 2002.02
 - Catalyst: AB-12-T

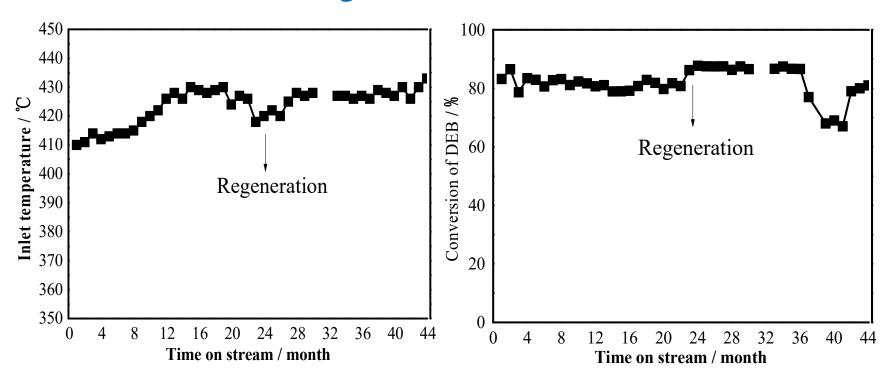
- Troubles encountered before 2017
 - Low DEB conversion
 - High reaction temp.
 - High content of heavy aromatics

Catalyst Replacement by AB-12-T™

Performance Comparison (run for 1 month)

Item	Ref.	AB-12-T	Comparison
Inlet Temp., °C	416.1	415.4	↓ 0.7
DEB conv, %	78.32	82.82	14.50
Sel. to EB, %	99.21	99.58	↑ 0.37

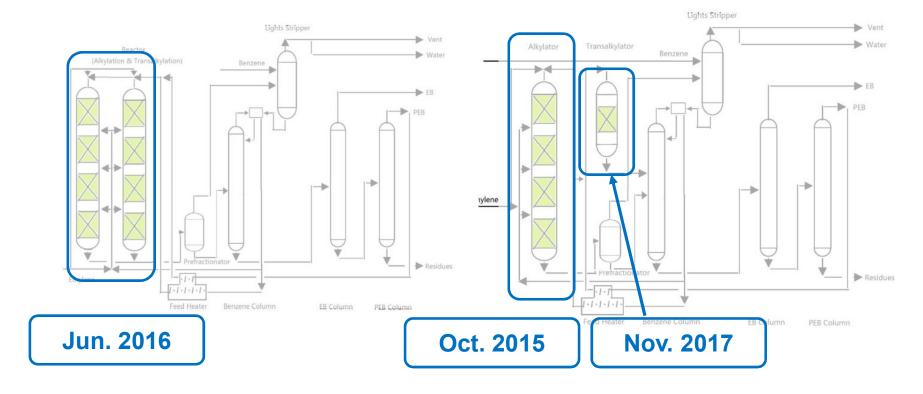
(run for 12 months)


Item	Ref.	AB-12-T	Comparison
Inlet Temp., °C	426.5	422.1	↓ 4.1
DEB conv, %	75.18	82.05	↑ 6.87
Sel. to EB, %	99.35	99.61	↑ 0.26

Heavy aromatics are greatly reduced on AB-12-T™

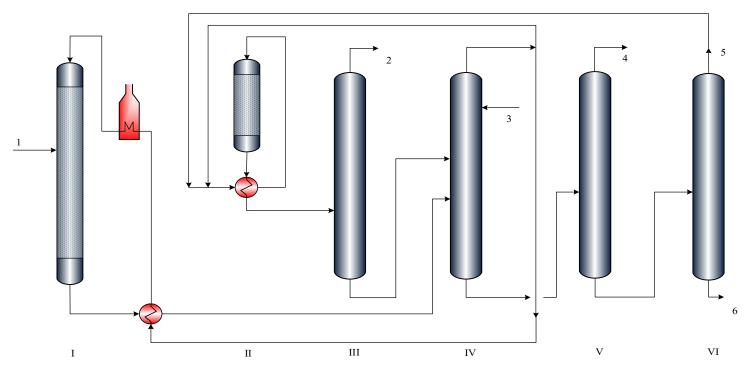
Catalyst Replacement by AB-12-T™

Running Data (2017.11~2021.7)


- Inlet temp. rises very slowly.
- DEB conv. is maintained at about 65~85%.
- Cycle length of AB-12-T was running smoothly for 24 months

Win the trust of clients

EB Unit No.1: 250 KTA


EB Unit No.2: 350 KTA

AB series catalyst completely substituted the old catalyst and brings benefits to them

Sinopec's Vapor-phase EB Process

- 1. Ethylene; 2. Off-gas, 3. Benzene; 4. EB; 5. Diethylbenzene; 6. High boiling production.
- I. Alkylation reactor; II. Transalkylation reactor; III. Stabilizer; IV. Benzene column; V. EB column; VI. Diethylbenzene column.

The simplified process diagram for vapor phase EB process with polymer grade ethylene

1 Introduction

Vapor-Phase EB Catalyst (Pure Ethylene)

Vapor-Phase EB Catalyst (Dilute Ethylene)

4 Liquid-Phase EB Catalyst

3. Vapor-Phase EB Catalyst (Dilute Ethylene)

Dilute Ethylene: An abundant resource from refinery units

Ethylene content, FCC: 10~20 wt% / DCC: 20~40 wt%

Sinopec has the whole technology chain from FCC/DCC to down-stream products.

3. Vapor-Phase EB Catalyst (Dilute Ethylene)

■Catalyst brand:

- \Box SEB-08TM (B/E = 6.0~7.0, mol/mol)
- **□** SEB- 12^{TM} (B/E = $5.0 \sim 5.5$, mol/mol)
- ■Applicable tech. sources
 - ☐ Sinopec, Other internal tech.
- ■Catalyst features:
 - □ Usage of a refinery off-gas (FCC/DCC)
 - Low materials cost of EB production
 - □ High ethylene conversion (≥ 99.5%)
 - **□** High selectivity (≥ 99%)
 - □ Low xylene content (600~800 ppm)
 - Long cycle length and service lifetime (≥1 year, ≥2 years)

3. Vapor-Phase EB Catalyst (Dilute Ethylene)

15 EB units applied

No.	Location	Capacity KTA	Tech. source	Appl. Yr.
1	Hainan	85	Internal Co.	2009
2	Shandong	90	Sinopec	2011
3	Guangdong	85	Sinopec	2011
4	Hunan	127	Sinopec	2012
5	Anhui	106	Internal Co.	2013
6	Heilongjiang	106	Internal Co.	2013
7	Guangdong	64	Sinopec	2013
8	Shandong	20	Internal Co.	2014
9	Hainan	127	Sinopec	2015
10	Shandong	40	Internal Co.	2015
11	Zhejiang	300	Sinopec	2016
12	Jiangxi	85	Sinopec	2017
13	Shandong	80	Internal Co.	2017
14	Shandong	65	Internal Co.	2018
15	Gansu	65	Internal Co.	2018
16	Henan	120	Sinopec	2021
17	Guangdong	400	Sinopec	2021
18	Anhui	400	Sinopec	2022
		Total: 2,365		

Application Case

■ Plant Location:

■ China

■ Unit Conditions

• Tech. source: DCPI

Designed capacity: 84.8 KTA

• Startup time: 2006.12

■ Catalyst

2006 – Reference Catalyst

● 2009 – SEB-08TM (SRIPT)

● 2014 – SEB-12TM (SRIPT)

Problems

(before the year 2009)

A part of ethylene was wasted

Xylene content was high

EB quality was not good enough

Raw Material Consumption was high

Energy Consumption was high Catalyst was frequently regenerated

Activity

Selectivity

Stability

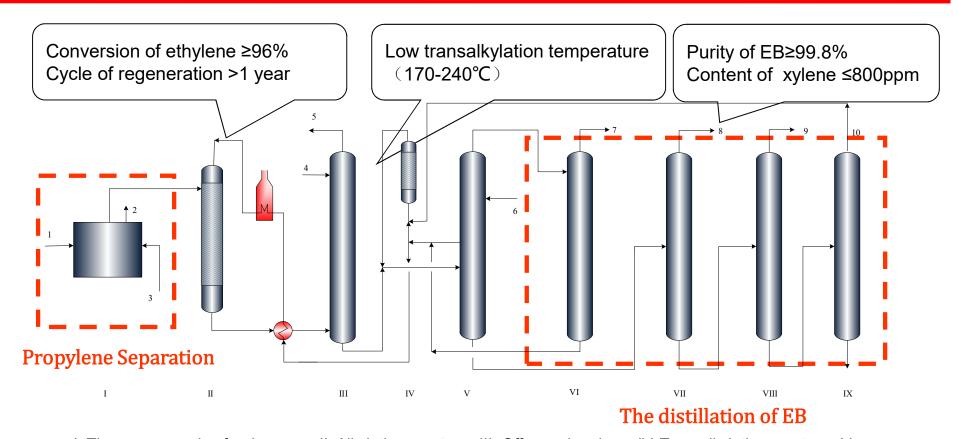
Catalyst Replacement by SEB-series

Item	Ref. Cat.	SEB-08	SEB-12
Average C ₂ = conversion, %	81.2	97.2	99.4
Annual EB yield, actual/design, %	83.5	95.5	107.7
B/E, mol/mol	6.5	6.5	5.2
Xylene/EB, ppm	1500	850	550
Cycle length, month	6	12	17

All the aforementioned problems are solved by:

- Catalyst replacement
- Assistance to improve the pre-treatment process of feedstock
- Assistance to optimize the reaction conditions (temp., B/E ratio, etc)

Economic Benefits


ltems	Improvement*
Ethylene conversion (EB yield)	14.6%
Cycle length	100~200%
Xylene/EB	↓ 400 ppm
Benzene consumption	↓ 6%
Energy consumption	↓ 27%

^{*}The benefits are calculated between SEB-12 and the Reference Catalyst.

More than **5.95 Million USD/a** additional retained profits for the 84.8 KTA EB unit!

Sinopec's SGEB EB Process with Dilute Ethylene

I. The preprocessing for dry gas; II. Alkylation reactor; III. Off-gas absorber; IV. Transalkylation reactor; V. Benzene column; VI. Removal column of non aromatic; VII. EB column; VIII. Phenypropane column; IX. Diethylbenzene column.

The simplified process diagram for vapor phase EB process with dilute ethylene

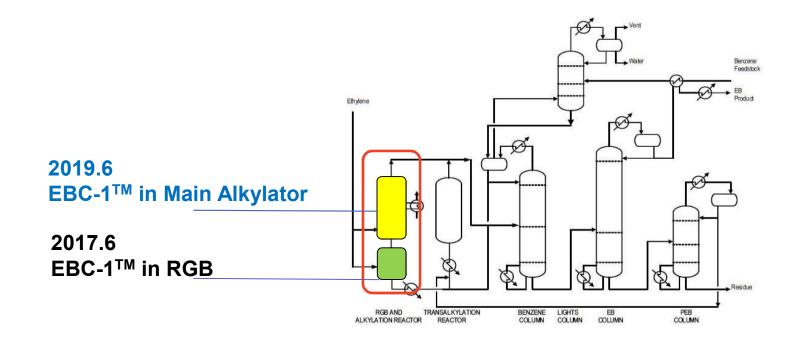
- 1 Introduction
- Vapor-Phase EB Catalyst (Pure Ethylene)
- Vapor-Phase EB Catalyst (Dilute Ethylene)
- 4 Liquid-Phase EB Catalyst

4. Liquid-Phase EB Catalyst

- Alkylation Catalyst: EBC-1TM & EBC-3TM
 - ☐ Lower reaction temperature, lower B/E ratio
 - ☐ High ethylene conversion
 - ☐ More selective to (mono-)EB
 - ☐ Traces of xylene, less residues
 - ☐ High EB product purity
- Trans-alkylation Catalyst: **EBC-2**TM
 - ☐ High DEB & TEB conversion
 - ☐ High selectivity to EB
 - ☐ High space velocity
 - Low PEB/benzene ratio
 - □ Flexible reaction temperature

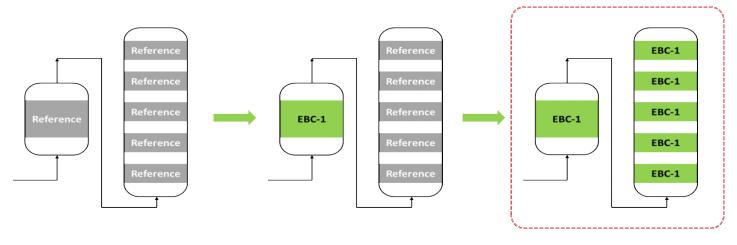
EBC-1/3 Quadlobe φ1.1 m >70 N/cm

4. Liquid-Phase EB Catalyst


4 EB units applied

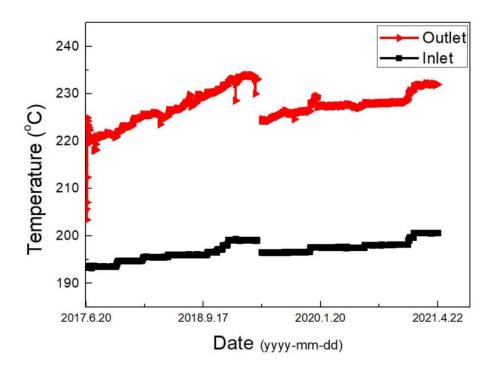
No.	Location	Capacity, KTA	Appl. Year	Catalyst
1	Client 1	320	2013	EBC-1™
2	Client 2	840	2017	EBC-1™
3	Client 3	530	2018	EBC-1™
4	Client 4	690	2020	EBC-3 TM

Application Cases


Application Case (840KTA)

Application Cases

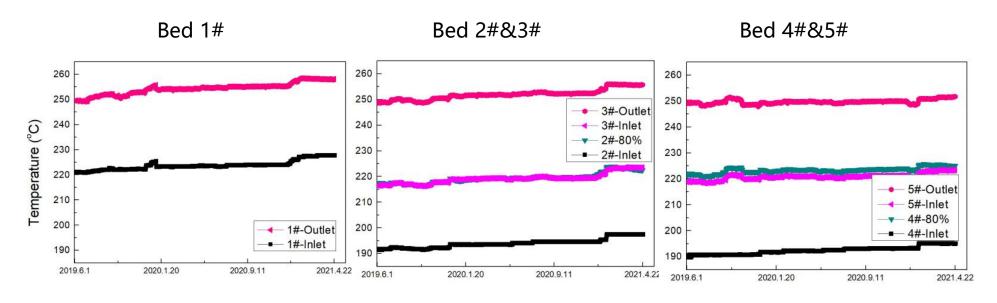
Application Case (840KTA)


Since Jul. 2017

Since Jul. 2019

Activity and Stability of EBC-1

Application Case (840KTA)



- 48 months since startup, RGB temperature rise is steady.
- Inlet temp. is stable at 193~198 °C.
- Hot spot is stabilized at around 60%.
- Stable ethylene conversion (100%)

Activity and Stability of EBC-1

Application Case (840KTA)

- 24 months since startup,
- Inlet temp. is stable at 190~195 °C.
- RGB temperature rise is steady.
- Hot spot is stabilized at around 50~80%.

The EBC-1 catalyst ensures the stable operation for EB units

Application Cases

Main Alkylator + RGB

Conponents / %	Ref. (B/E = <mark>3.2</mark>)	EBC-1 (B/E = 2.9)
N-A	1.053	0.305
Bz	62.203	60.236
TL	0	0
EB	31.964	35.134
X	0	0
PB	0	0
ВВ	0.005	0.003
DEB	4.381	4.053
TEM	0.322	0.228
Residues	0.072	0.041

EBC-1: Higher selectivity to EB; less by-products

Application Cases

Main Alkylator + RGB

Catalyst		Ref.	EBC-1
	RGB	196.3	196.5
Inlet Temp. (°C)	Bed2#	195.4	192.2
	Bed4#	190.8	190.8
Unit Load (%)		94	98
Total Ethylene WHSV (hr¹)		0.97	1.13
B/E molar ratio		3.2	2.9
Residue Content (kg/ton·EB)		2.76	2.30
Product EB purity (%)		>99.9	>99.9

EBC-1 is more active and selective

